首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevated expression of heat shock protein gp96 in hepatitis B virus (HBV)-infected patients is positively correlated with the progress of HBV-induced diseases, but little is known regarding the molecular mechanism of virus-induced gp96 expression and its impact on HBV infection. In this study, up-regulation of gp96 by HBV replication was confirmed both in vitro and in vivo. Among HBV components, HBV x protein (HBx) was found to increase gp96 promoter activity and enhance gp96 expression by using a luciferase reporter system, and western blot analysis. Further, we found that HBx-mediated regulation of gp96 expression requires a NF-κB cis-regulatory element on the gp96 promoter, and chromatin immunoprecipitation results demonstrated that HBx promotes the binding of NF-κB to the gp96 promoter. Significantly, both gain- and loss-of-function studies showed that gp96 enhances HBV production in HBV-transfected cells and a mouse model based on hydrodynamic transfection. Moreover, up-regulated gp96 expression was observed in HBV-infected patients, and gp96 levels were correlated with serum viral loads. Thus, our work demonstrates a positive feedback regulatory pathway involving gp96 and HBV, which may contribute to persistent HBV infection. Our data also indicate that modulation of gp96 function may represent a novel strategy for the intervention of HBV infection.  相似文献   

2.
3.
MicroRNAs have been shown to contribute to a repertoire of host-pathogen interactions during viral infection. Our previous study demonstrated that microRNA-30e* (miR-30e*) directly targeted the IκBα 3′-UTR and disrupted the NF-κB/IκBα negative feedback loop, leading to hyperactivation of NF-κB. This current study investigated the possible role of miR-30e* in the regulation of innate immunity associated with dengue virus (DENV) infection. We found that DENV infection could induce miR-30e* expression in DENV-permissive cells, and such an overexpression of miR-30e* upregulated IFN-β and the downstream IFN-stimulated genes (ISGs) such as OAS1, MxA and IFITM1, and suppressed DENV replication. Furthermore, suppression of IκBα mediates the enhancing effect of miR-30e* on IFN-β-induced antiviral response. Collectively, our findings suggest a modulatory role of miR-30e* in DENV induced IFN-β signaling via the NF-κB-dependent pathway. Further investigation is needed to evaluate whether miR-30e* has an anti-DENV effect in vivo.  相似文献   

4.
NF-κB and inflammasomes both play central roles in orchestrating anti-pathogen responses by rapidly inducing a variety of early-response cytokines and chemokines following infection. Myxoma virus (MYXV), a pathogenic poxvirus of rabbits, encodes a member of the cellular pyrin domain (PYD) superfamily, called M013. The viral M013 protein was previously shown to bind host ASC-1 protein and inhibit the cellular inflammasome complex that regulates the activation and secretion of caspase 1-regulated cytokines such as IL-1β and IL-18. Here, we report that human THP-1 monocytic cells infected with a MYXV construct deleted for the M013L gene (vMyxM013-KO), in stark contrast to the parental MYXV, rapidly induce high levels of secreted pro-inflammatory cytokines like TNF, IL-6, and MCP-1, all of which are regulated by NF-κB. The induction of these NF-κB regulated cytokines following infection with vMyxM013-KO was also confirmed in vivo using THP-1 derived xenografts in NOD-SCID mice. vMyxM013-KO virus infection specifically induced the rapid phosphorylation of IKK and degradation of IκBα, which was followed by nuclear translocation of NF-κB/p65. Even in the absence of virus infection, transiently expressed M013 protein alone inhibited cellular NF-κB-mediated reporter gene expression and nuclear translocation of NF-κB/p65. Using protein/protein interaction analysis, we show that M013 protein also binds directly with cellular NF-κB1, suggesting a direct physical and functional linkage between NF-κB1 and ASC-1. We further demonstrate that inhibition of the inflammasome with a caspase-1 inhibitor did not prevent the induction of NF-κB regulated cytokines following infection with vMyxM013-KO virus, but did block the activation of IL-1β. Thus, the poxviral M013 inhibitor exerts a dual immuno-subversive role in the simultaneous co-regulation of both the cellular inflammasome complex and NF-κB-mediated pro-inflammatory responses.  相似文献   

5.
The IκB kinase (IKK) complex is a key regulator of signal transduction pathways leading to the induction of NF-κB-dependent gene expression and production of pro-inflammatory cytokines. It therefore represents a major target for the development of anti-inflammatory therapeutic drugs and may be targeted by pathogens seeking to diminish the host response to infection. Previously, the vaccinia virus (VACV) strain Western Reserve B14 protein was characterised as an intracellular virulence factor that alters the inflammatory response to infection by an unknown mechanism. Here we demonstrate that ectopic expression of B14 inhibited NF-κB activation in response to TNFα, IL-1β, poly(I:C), and PMA. In cells infected with VACV lacking gene B14R (vΔB14) there was a higher level of phosphorylated IκBα but a similar level of IκBα compared to cells infected with control viruses expressing B14, suggesting B14 affects IKK activity. Direct evidence for this was obtained by showing that B14 co-purified and co-precipitated with the endogenous IKK complex from human and mouse cells and inhibited IKK complex enzymatic activity. Notably, the interaction between B14 and the IKK complex required IKKβ but not IKKα, suggesting the interaction occurs via IKKβ. B14 inhibited NF-κB activation induced by overexpression of IKKα, IKKβ, and a constitutively active mutant of IKKα, S176/180E, but did not inhibit a comparable mutant of IKKβ, S177/181E. This suggested that phosphorylation of these serine residues in the activation loop of IKKβ is targeted by B14, and this was confirmed using Ab specific for phospho-IKKβ.  相似文献   

6.
7.
8.
9.
10.
11.
Virtually all eukaryotes have developed defense mechanisms to efficiently counter potential threats from prokaryotic microorganisms; an example is the conserved nuclear factor-kappaB (NF-κB) signaling system. However, bacterial pathogens and commensals have in turn evolved highly effective counter mechanisms to modulate this immune regulatory circuit. Modifications in ubiquitin, ubiquitin-like (Ubl) proteins such as neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) and other post-translational modifications (PTMs) in the NF-κB system represent attractive targets for microbial manipulation. In this review, we describe recent advances in understanding the different strategies that bacteria have evolved to interfere with PTMs in NF-κB signal transmission.  相似文献   

12.
Modulation of NF-κB signalling by microbial pathogens   总被引:1,自引:0,他引:1  
  相似文献   

13.
We recently reported on a series of retinoid-related molecules containing an adamantyl group, a.k.a. adamantyl arotinoids (AdArs), that showed significant cancer cell growth inhibitory activity and activated RXRα (NR2B1) in transient transfection assays while devoid of RAR transactivation capacity. We have now explored whether these AdArs could also bind and inhibit IKKβ, a known target that mediates the induction of apoptosis and cancer cell growth inhibition by related AdArs containing a chalcone functional group. In addition, we have prepared and evaluated novel AdArs that incorporate a central heterocyclic ring connecting the adamantyl-phenol and the carboxylic acid at the polar termini. Our results indicate that the majority of the RXRα activating compounds lacked IKKβ inhibitory activity. In contrast, the novel heterocyclic AdArs containing a thiazole or pyrazine ring linked to a benzoic acid motif were potent inhibitors of both IKKα and IKKβ, which in most cases paralleled significant growth inhibitory and apoptosis inducing activities.  相似文献   

14.
Alloferon is a 13-amino acid peptide isolated from the bacteria-challenged larvae of the blow fly Calliphora vicina. The pharmaceutical value of the peptide has been well demonstrated by its capacity to stimulate NK cytotoxic activity and interferon (IFN) synthesis in animal and human models, as well as to enhance antiviral and antitumor activities in mice. Antiviral and the immunomodulatory effectiveness of alloferon have also been supported clinically proved in patients suffering with herpes simplex virus (HSV) and human papilloma virus (HPV) infections. To elucidate molecular response to alloferon treatment, we initially screened a model cell line in which alloferon enhanced IFN synthesis upon viral infection. Among the cell lines tested, Namalva was chosen for further proteomic analysis. Fluorescence difference gel electrophoresis (DIGE) revealed that the levels of a series of antioxidant proteins decreased after alloferon treatment, while at least three glycolytic enzymes and four heat-shock proteins were increased in their expression levels. Based on the result of our proteomic analysis, we speculated that alloferon may activate the NF-kappaB signaling pathway. IkappaB kinase (IKK) assay, Western blot analysis on IkappaBalpha and its phosphorylated form at Ser 32, and an NF-kappaB reporter assay verified our proteomics-driven hypothesis. Thus, our results suggest that alloferon potentiates immune cells by activating the NF-kappaB signaling pathway through regulation of redox potential. Since NF-kappaB activation is involved in IFN synthesis, our results provide further clues as to how the alloferon peptide may stimulate IFN synthesis.  相似文献   

15.
16.
17.
ΔNp63α, the dominant negative isoform of the p63 family is an essential survival factor in head and neck squamous cell carcinoma. This isoform has been shown to be downregulated in response to several DNA damaging agents, thereby enabling an effective cellular response to genotoxic agents. Here, we identify a key molecular mechanism underlying the regulation of ΔNp63α expression in response to extrinsic stimuli, such as chemotherapeutic agents. We show that ΔNp63α interacts with NFκB in presence of cisplatin. We find that NFκB promotes ubiquitin-mediated proteasomal degradation of ΔNp63α. Chemotherapy-induced stimulation of NFκB leads to degradation of ΔNp63α and augments trans-activation of p53 family-induced genes involved in the cellular response to DNA damage. Conversely, inhibition of NFκB with siRNA-mediated silencing NFκB expression attenuates chemotherapy induced degradation of ΔNp63α. These data demonstrate that NFκB plays an essential role in regulating ΔNp63α in response to extrinsic stimuli. Our findings suggest that the activation of NFκB may be a mechanism by which levels of ΔNp63α are reduced, thereby rendering the cells susceptible to cell death in the face of cellular stress or DNA damage.Key words: ΔNp63α, NFκB, ubiquitination, cisplatin, head and neck cancer  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号