首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intracellular Ca2+ mobilization plays an important role in a wide variety of cellular processes, and multiple second messengers are responsible for mediating intracellular Ca2+ changes. Here we explored the role of one endogenous Ca2+-mobilizing nucleotide, cyclic adenosine diphosphoribose (cADPR), in the proliferation and differentiation of neurosecretory PC12 cells. We found that cADPR induced Ca2+ release in PC12 cells and that CD38 is the main ADP-ribosyl cyclase responsible for the acetylcholine (ACh)-induced cADPR production in PC12 cells. In addition, the CD38/cADPR signaling pathway is shown to be required for the ACh-induced Ca2+ increase and cell proliferation. Inhibition of the pathway, on the other hand, accelerated nerve growth factor (NGF)-induced neuronal differentiation in PC12 cells. Conversely, overexpression of CD38 increased cell proliferation but delayed NGF-induced differentiation. Our data indicate that cADPR plays a dichotomic role in regulating proliferation and neuronal differentiation of PC12 cells.Mobilization of intracellular Ca2+ stores is involved in diverse cell functions, including fertilization, cell proliferation, and differentiation (14). At least three endogenous Ca2+-mobilizing messengers have been identified, including inositol trisphosphate (IP3),3 nicotinic adenine acid dinucleotide phosphate (NAADP), and cyclic adenosine diphosphoribose (cADPR). Similar to IP3, cADPR can mobilize calcium release in a wide variety of cell types and species, from protozoa to animals. The cADPR-mediated Ca2+ signaling has been indicated in a variety of cellular processes (57), from abscisic acid signaling and regulation of the circadian clock in plants, to mediating long-term synaptic depression in hippocampus.Ample evidence shows that the ryanodine receptors are the main intracellular targets for cADPR (1, 2, 8). Ryanodine receptors (RyRs) are intracellular Ca2+ channels widely expressed in various cells and tissues, including muscles and neurons. It is the major cellular mediator of Ca2+-induced Ca2+ release (CICR) in cells. There are three isoforms of ryanodine receptors: RyR1, RyR2, and RyR3, all of which have been implicated in the cADPR signaling (1, 2, 8). However, evidence regarding cADPR acting directly on the receptors is lacking (9). It has been suggested that accessory proteins, such as calmodulin and FK506-binding protein (FKBP), may be involved instead (1015).cADPR is formed from nicotinamide adenine dinucleotide (NAD) by ADP-ribosyl cyclases. Six ADP-ribosyl cyclases have been identified so far: Aplysia ADP-ribosyl cyclase, three sea urchin homologues (16, 17), and two mammalian homologues, CD38 and CD157 (18). CD38 is a membrane-bound protein and the main mammalian ADP-ribosyl cyclase. As a novel multifunctional enzyme, CD38 catalyzes the synthesis and hydrolysis of both cADPR and NAADP, two structurally and functionally distinct Ca2+ messengers. Virtually all mammalian tissues ever examined have been shown to express CD38. CD38 knock-out mice exhibit multiple physiological defects, ranging from impaired immune responses, metabolic disturbances, to behavioral modifications (1, 6, 18).CD38 was originally identified as a lymphocyte differentiation antigen (18). Indeed, CD38/cADPR has been linked to cell differentiation (5). For example, in human HL-60 cells, CD38 expression and the consequential accumulation of cADPR play a causal role in mediating granulocytic differentiation (19). In addition, expression of CD38 in HeLa and 3T3 cells not only increased intracellular Ca2+ concentration but also induced cell proliferation by significantly reducing the S phase duration, leading to shortened cell doubling time (20). The ability of cADPR to increase cell proliferation has also been observed in human T cells (21), human hemopoietic progenitors (22), human peripheral blood mononuclear cells (23), human mesenchymal stem cells (24), and murine mesangial cells (25).The PC12 cell line was derived from rat adrenal medulla and has been used extensively as a neuronal model, since it exhibits many of the functions observed in primary neuronal cultures (26). Most importantly, PC12 cells can be induced by nerve growth factor (NGF) to differentiate into cells with extensive neurite outgrowths, resembling neuronal dendritic trees (26, 27). In contrast to NGF, numerous growth factors and neurotransmitters can induce the proliferation of PC12 cells instead (26). Both IP3 receptor- and ryanodine receptor-mediated Ca2+ stores have been shown to be present in PC12 cells (2831). The type 2 ryanodine receptor is expressed in PC12 cells and activation of the NO/cGMP pathway in PC12 cells results in calcium mobilization, which is mediated by cADPR and similar to that seen in sea urchin eggs (32). It has been demonstrated that NAADP, another Ca2+-mobilizing messenger, is also a potent neuronal differentiation inducer in PC12 cells, while IP3 exhibits no such role (33, 34). Whether cADPR is involved in the proliferation and differentiation of PC12 cells is unknown.Here we show that activation of the CD38/cADPR/Ca2+ signaling is required for the ACh-induced proliferation in PC12 cells, while inhibition of the pathway accelerates NGF-induced neuronal differentiation. Our data indicate that cADPR is important in regulating cell proliferation and neuronal differentiation in PC12 cells.  相似文献   

2.
3.
泛素偶联酶2C与多种肿瘤细胞的增殖密切相关,但其与肺癌发生和发展的关系尚不明确。 本研究以肺癌A549细胞为材料,通过RT-PCR、Western印迹、免疫荧光、SA-β-Gal细胞衰老染色、细胞划痕和Trans-well实验,阐明UBE2C与肺癌细胞的增殖、衰老和迁移能力的关系。结果显示,UBE2C在肺癌细胞中的表达明显高于正常细胞。利用基因修饰技术瞬时过表达或靶向沉默UBE2C后,在肺癌A549细胞中,UBE2C的mRNA和蛋白质水平显著增加3.5倍或减少0.5倍,显著促进或抑制细胞增殖,进而减少或增加细胞的凋亡率。过表达UBE2C后,显著抑制细胞衰老;但沉默UBE2C后,则增加细胞衰老。此外,过表达UBE2C后,下调转移相关基因E-钙黏着蛋白的mRNA和蛋白质表达水平,且上调波形蛋白基因的表达水平,进而促进肺癌细胞的迁移。但靶向敲除UBE2C后,上调E-钙黏着蛋白,同时下调波形蛋白表达水平,进而抑制肺癌细胞的迁移。本研究的开展将明确UBE2C在肺癌中的作用及其机制,为以UBE2C为靶点,提高病人生存期提供了理论基础。  相似文献   

4.
5.
Past research has shown that natural products of plant and marine origins and their congeners enhance the actions of neuritogenic factors of the central nervous system (CNS) such as nerve growth factor (NGF). However, the role of fluorine substitutions in their structure–activity relationship (SAR) has not been explored. We have synthesized a trifluoromethyl analog of verbenachalcone (VC), a pharmacologically active natural compound previously shown to potentiate NGF activity. This analog, designated C278, enhances neurite outgrowth and proliferation of NeuroScreen-1™ (NS-1) cells, a subclone of PC12 pheochromocytoma cells. C278 increases the percentage of neurite bearing cells in the presence of suboptimal doses of NGF in comparison with controls treated with NGF alone. In addition, C278 stimulates cell growth in reduced serum and serum-free cell culture conditions based on our observation of increases in cell number and metabolic assessment with MTT reduction and resazurin assays. The addition of C278 partially restored inhibition of NGF-induced neurite outgrowth by the mitogen-activated protein kinase kinase (MEK) inhibitors PD98059 and U0126. Short-term sequential exposure of cells to U0126, C278, and NGF enhanced phosphorylation of extracellular signal-regulated kinase (ERK) in comparison with cells treated with only the MEK inhibitor and NGF. C278 also attenuated cell growth arrest caused by exposure to PD98059, U0126 and the phosphatidylinositol-3 kinase (PI3K) inhibitor, LY294002 but did not alter phosphorylation of Akt, a classic downstream target of PI3K during cell survival. These data suggest that C278 promotes NGF-dependent neurite outgrowth in NS-1 cells through a MEK signaling pathway by a mechanism that alters short-term activation of ERK. In contrast, C278 promotes PI3K-mediated survival independently of Akt phosphorylation.  相似文献   

6.
摘要 目的:研究miR-155靶向PTEN-PI3KAKT通路促进鼻咽癌细胞增殖并抑制其凋亡的作用机制。方法:选取105只成年健康SD雄性大鼠作为研究对象,将其以随机抽签法等分成观察组、对照组、试验组,每组35只。所有大鼠通过诱癌剂二甲硝基哌嗪腋部皮下注射以及促癌剂佛波醇酯皮下注射进行鼻咽癌大鼠模型的建立。观察组大鼠予以miR-155抑制剂干预,试验组予以PI3K抑制剂干预,对照组不予以任何干预。以实时荧光定量PCR法检测miR-155相对表达量,采用免疫组化法检测PTEN、PI3K、P-AKT表达情况,通过Western blot法检测Bcl-2、Bax、Ezrin蛋白表达水平。比较三组大鼠上述相关指标水平,并作相关性分析。结果:试验组、观察组、对照组大鼠的miR-155相对表达量分别为(34.88±1.32)、(29.72±1.23)、(35.01±1.34),观察组显著低于试验组和对照组,差异明显(F=23.105,P=0.000)。试验组、观察组、对照组大鼠PTEN表达率逐渐升高,而PI3K、P-AKT表达率逐渐降低(均P<0.05)。经Pearson相关性分析可得:鼻咽癌大鼠miR-155相对表达量与PTEN表达率呈正相关关系,而与PI3K、P-AKT表达率呈负相关关系(均P<0.05)。试验组、观察组、对照组Bcl-2、Ezrin蛋白表达水平呈逐渐升高趋势,而Bax蛋白表达水平呈逐渐减低趋势,且经单因素方差分析发现:各组间对比差异显著(均P<0.05)。结论:miR-155可能是通过靶向作用于PTEN-PI3KAKT信号通路,继而发挥促进鼻咽癌细胞增殖以及抑制鼻咽癌细胞凋亡的作用。临床工作中可能将其作为鼻咽癌治疗的新靶点。  相似文献   

7.
8.
9.
Hepatocarcinogenesis commonly involves the gradual progression from hepatitis to fibrosis and cirrhosis, and ultimately to hepatocellular carcinoma (HCC). Endothelin 1 (Edn1) has been identified as a gene that is significantly up-regulated in HBx-induced HCC in mice. In this study, we further investigated the role of edn1 in hepatocarcinogenesis using a transgenic zebrafish model and a cell culture system. Liver-specific edn1 expression caused steatosis, fibrosis, glycogen accumulation, bile duct dilation, hyperplasia, and HCC in zebrafish. Overexpression of EDN1 in 293T cells enhanced cell proliferation and cell migration in in vitro and xenotransplantation assays and was accompanied with up-regulation of several cell cycle/proliferation- and migration-specific genes. Furthermore, expression of the unfolded protein response (UPR) pathway-related mediators, such as spliced XBP1, ATF6, IRE1, and PERK, was also up-regulated at both the RNA and protein levels. In the presence of an EDN1 inhibitor or an AKT inhibitor, these increases were diminished and the EDN1-induced migration ability also was disappeared, suggesting that the EDN1 effects act through activation of the AKT pathway to enhance the UPR and subsequently activate the expression of downstream genes. Additionally, p-AKT is enhanced in the edn1 transgenic fish compared to the GFP-mCherry control. The micro RNA miR-1 was found to inhibit the expression of EDN1. We also observed an inverse correlation between EDN1 and miR-1 expression in HCC patients. In conclusion, our data suggest that EDN1 plays an important role in HCC progression by activating the PI3K/AKT pathway and is regulated by miR-1.  相似文献   

10.
11.
Binding of angiogenic molecules with cognate receptor tyrosine kinases (RTK) is required for angiogenesis however the precise link between RTK binding, endocytosis, and signaling requires further investigation. Here, we use FGFR1 as a model to test the effects of the large GTPase and endocytosis regulatory molecule dynamin-2 on angiogenic signaling in context of distinct FGF ligands. In vitro, overexpression of dominant negative dynamin-2 (DynK44A) attenuates FGFR1 activation of Erk and tubulogenesis by FGF2. Furthermore, we identify FGF21, a non-classical, FGF ligand implicated in diverse human pathologies as an angiogenic molecule acting through FGFR1 and β-Klotho coreceptor. Disruption of FGFR1 activation of ERK by FGF21 is achieved by perturbation of the function of both dynamin-2 and Rab5 GTPase. In vivo, mice harboring endothelial selective overexpression of DynK44A, show impaired angiogenesis in response to FGF21. In conclusion, dynamin dependent endocytosis of FGFR1 is required for in vitro and in vivo angiogenesis in response to FGF2 and the non-classical FGF ligand, FGF21. These studies extend our understanding of the relationships between RTK binding, internalization, endosomal targeting, and angiogenic signaling.  相似文献   

12.
目的:探讨S100A9对人肝癌细胞系HepG2生物学行为的影响及可能机制。方法:采用免疫组织化学法与Western blot方法检测人肝癌组织与癌旁组织中S100A9蛋白表达水平;原核表达重组蛋白的方法构建重组蛋白GST-S100A9,用GST-S100A9处理肝癌细胞HepG2和肝正常细胞L02,然后用MTT法检测细胞存活能力,Transwell侵袭实验检测细胞侵袭力;Western blot方法检测肝癌细胞HepG2与肝正常细胞L02中晚期糖基化终末产物受体(RAGE)的表达水平。结果:S100A9在人肝癌组织中的表达较癌旁组织显著增高;GST-S100A9可以促进肝癌细胞HepG2的存活与侵袭,但对肝正常细胞L02无作用;RAGE的表达在HepG2细胞中较在L02细胞中显著升高;RAGE阻断抗体可阻断GST-S100A9对HepG2细胞的促存活与促侵袭作用,表明这些作用是通过RAGE介导的。结论:S100A9促进肝癌细胞HepG2的存活与侵袭依赖于RAGE。  相似文献   

13.
目的:探讨炎症因子Daintain/AIF-1在肝癌发生发展进程中的作用。方法:利用结晶紫染色方法测定HepG2细胞的增殖,流式细胞术测定细胞周期分布,western blot方法检测相关周期表达蛋白,Transwell方法检测HepG2细胞的迁移。结果:在此研究中我们发现Daintain/AIF-1通过上调周期相关蛋白cyclinD1和cdk4的表达以及增加Rb的磷酸化,加快了HepG2细胞周期的进程,从而促进了HepG2细胞的增殖,另外我们发现Daintain/AIF-1也促进了HepG2细胞的迁移。结论:此研究表明Daintain/AIF-1参与了肝癌的发生发展进程,更进一步证明了炎症因子与癌症的发生发展密不可分。  相似文献   

14.
Dissociated cerebellar granule cells maintained in medium containing 25 mM potassium undergo an apoptotic death when switched to medium with 5 mM potassium. Granule cells from mice in which Bax, a proapoptotic Bcl-2 family member, had been deleted, did not undergo apoptosis in 5 mM potassium, yet did undergo an excitotoxic cell death in response to stimulation with 30 or 100 μM NMDA. Within 2 h after switching to 5 mM K+, both wild-type and Bax-deficient granule cells decreased glucose uptake to <20% of control. Protein synthesis also decreased rapidly in both wild-type and Bax-deficient granule cells to 50% of control within 12 h after switching to 5 mM potassium. Both wild-type and Bax −/− neurons increased mRNA levels of c-jun, and caspase 3 (CPP32) and increased phosphorylation of the transactivation domain of c-Jun after K+ deprivation. Wild-type granule cells in 5 mM K+ increased cleavage of DEVD–aminomethylcoumarin (DEVD-AMC), a fluorogenic substrate for caspases 2, 3, and 7; in contrast, Bax-deficient granule cells did not cleave DEVD-AMC. These results place BAX downstream of metabolic changes, changes in mRNA levels, and increased phosphorylation of c-Jun, yet upstream of the activation of caspases and indicate that BAX is required for apoptotic, but not excitotoxic, cell death. In wild-type cells, Boc-Asp-FMK and ZVAD-FMK, general inhibitors of caspases, blocked cleavage of DEVD-AMC and blocked the increase in TdT-mediated dUTP nick end labeling (TUNEL) positivity. However, these inhibitors had only a marginal effect on preventing cell death, suggesting a caspase-independent death pathway downstream of BAX in cerebellar granule cells.  相似文献   

15.

Background

StAR-related lipid transfer domain containing 7 (StarD7) is a member of the START-domain protein family whose function still remains unclear. Our data from an explorative microarray assay performed with mRNAs from StarD7 siRNA-transfected JEG-3 cells indicated that ABCG2 (ATP-binding cassette sub-family G member 2) was one of the most abundantly downregulated mRNAs.

Methodology/Principal Findings

Here, we have confirmed that knocking down StarD7 mRNA lead to a decrease in the xenobiotic/lipid transporter ABCG2 at both the mRNA and protein levels (−26.4% and −41%, p<0.05, at 48 h of culture, respectively). Also a concomitant reduction in phospholipid synthesis, bromodeoxyuridine (BrdU) uptake and 3H-thymidine incorporation was detected. Wound healing and transwell assays revealed that JEG-3 cell migration was significantly diminished (p<0.05). Conversely, biochemical differentiation markers such as human chorionic gonadotrophin β-subunit (βhCG) protein synthesis and secretion as well as βhCG and syncytin-1 mRNAs were increased approximately 2-fold. In addition, desmoplakin immunostaining suggested that there was a reduction of intercellular desmosomes between adjacent JEG-3 cells after knocking down StarD7.

Conclusions/Significance

Altogether these findings provide evidence for a role of StarD7 in cell physiology indicating that StarD7 modulates ABCG2 multidrug transporter level, cell migration, proliferation, and biochemical and morphological differentiation marker expression in a human trophoblast cell model.  相似文献   

16.
The glucose-regulated protein 78 (GRP78) is a plasminogen (Pg) receptor on the cell surface. In this study, we demonstrate that GRP78 also binds the tissue-type plasminogen activator (t-PA), which results in a decrease in Km and an increase in the Vmax for both its amidolytic activity and activation of its substrate, Pg. This results in accelerated Pg activation when GRP78, t-PA, and Pg are bound together. The increase in t-PA activity is the result of a mechanism involving a t-PA lysine-dependent binding site in the GRP78 amino acid sequence 98LIGRTWNDPSVQQDIKFL115. We found that GRP78 is expressed on the surface of neuroblastoma SK-N-SH cells where it is co-localized with the voltage-dependent anion channel (VDAC), which is also a t-PA-binding protein in these cells. We demonstrate that both Pg and t-PA serve as a bridge between GRP78 and VDAC bringing them together to facilitate Pg activation. t-PA induces SK-N-SH cell proliferation via binding to GRP78 on the cell surface. Furthermore, Pg binding to the COOH-terminal region of GRP78 stimulates cell proliferation via its microplasminogen domain. This study confirms previous findings from our laboratory showing that GRP78 acts as a growth factor-like receptor and that its association with t-PA, Pg, and VDAC on the cell surface may be part of a system controlling cell growth.  相似文献   

17.
Lung cancer is one of the most common types of carcinoma worldwide. Cigarette smoking is considered the leading cause of lung cancer. Aberrant expression of several YT521-B homology (YTH) family proteins has been reported to be closely associated with multiple cancer types. The present study aims to evaluate the function and regulatory mechanisms of the N6-methyladenosine (m6A) reader protein YTH domain containing 2 (YTHDC2) by in vitro, in vivo and bioinformatics analyses. The results revealed that YTHDC2 was reduced in lung cancer and cigarette smoke-exposed cells. Notably, bioinformatics and tissue arrays analysis demonstrated that decreased YTHDC2 was highly associated with smoking history, pathological stage, invasion depth, lymph node metastasis and poor outcomes. The in vivo and in vitro studies revealed that YTHDC2 overexpression inhibited the proliferation and migration of lung cancer cells as well as tumor growth in nude mice. Furthermore, YTHDC2 decreased expression was modulated by copy number deletion in lung cancer. Importantly, the cylindromatosis (CYLD)/NF-κB pathways were confirmed as the downstream signaling of YTHDC2, and this axis was mediated by m6A modification. The present results indicated that smoking-related downregulation of YTHDC2 was associated with enhanced proliferation and migration in lung cancer cells, and appeared to be regulated by DNA copy number variation. Importantly, YTHDC2 functions as a tumor suppressor through the CYLD/NF-κB signaling pathway, which is mediated by m6A modification.  相似文献   

18.
Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS) and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model’s predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and modification of the model. Thus, our results provide both new insights and means to further our understanding of canonical WNT/β-catenin signaling and the role of ROS as intracellular signaling mediator.  相似文献   

19.
Irisin is a newly discovered myokine that links exercise with metabolic homeostasis. It is involved in modest weight loss and improves glucose intolerance. However, the direct effects and mechanisms of irisin on vascular endothelial cells (ECs) are not fully understood. In the current study, we demonstrated that irisin promoted Human Umbilical Vein Endothelial Cell (HUVEC) proliferation. It was further demonstrated that this pro-proliferation effect was mediated by irisin-induced activation of extracellular signal–related kinase (ERK) signaling pathways. Inhibition of ERK signaling with U0126 decreased the pro-proliferation effect of irisin on HUVECs. It was also demonstrated that irisin reduced high glucose-induced apoptosis by up-regulating Bcl-2 expression and down-regulating Bax, Caspase-9 and Caspase-3 expression. In summary, these results suggested that irisin plays a novel role in sustaining endothelial homeostasis by promoting HUVEC proliferation via the ERK signaling pathway and protects the cell from high glucose-induced apoptosis by regulating Bcl-2,Bax and Caspase expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号