首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress and P53 contribute to the pathogenesis of diabetic kidney disease (DKD). Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular antioxidant defense system, is negatively regulated by P53 and prevents DKD. Recent findings revealed an important role of mouse double minute 2 (MDM2) in protection against DKD. However, the mechanism remained unclear. We hypothesized that MDM2 enhances NRF2 antioxidant signaling in DKD given that MDM2 is a key negative regulator of P53. The MDM2 inhibitor nutlin3a elevated renal P53, inhibited NRF2 signaling and induced oxidative stress, inflammation, fibrosis, DKD-like renal pathology and albuminuria in the wild-type (WT) non-diabetic mice. These effects exhibited more prominently in nutlin3a-treated WT diabetic mice. Interestingly, nutlin3a failed to induce greater renal injuries in the Nrf2 knockout (KO) mice under both the diabetic and non-diabetic conditions, indicating that NRF2 predominantly mediates MDM2's action. On the contrary, P53 inhibition by pifithrin-α activated renal NRF2 signaling and the expression of Mdm2, and attenuated DKD in the WT diabetic mice, but not in the Nrf2 KO diabetic mice. In high glucose-treated mouse mesangial cells, P53 gene silencing completely abolished nutlin3a's inhibitory effect on NRF2 signaling. The present study demonstrates for the first time that MDM2 controls renal NRF2 antioxidant activity in DKD via inhibition of P53, providing MDM2 activation and P53 inhibition as novel strategies in the management of DKD.  相似文献   

2.
3.
Hematopoietic stem cells provide an indispensible source for replenishing the blood with all its constituents throughout the organism''s lifetime. Mice with a compromised hematopoietic stem cell compartment cannot survive. p53, a major tumor suppressor gene, has been implicated in regulation of hematopoiesis. In particular, p53 plays a role in homeostasis by regulating HSC quiescence and self renewal. We recently utilized a hypomorphic p53515C allele in conjunction with Mdm2, a negative regulator of p53, to gain insights into the role of p53 in hematopoietic regulation. Our analyses revealed that p53515C/515CMdm2−/− double mutant mice die soon after birth due to hematopoietic failure. Further mechanistic studies revealed that in the absence of Mdm2, ROS-induced postnatal p53 activity depletes hematopoietic stem cells, progenitors and differentiated cells.Key words: HSC, reactive oxygen species, ROS, p53, Mdm2  相似文献   

4.
The Murine double-minute clone 2 (Mdm2) onco-protein is the principal regulator of the tumour suppressor, p53. Mdm2 acts as an E3-type ubiquitin ligase that mediates the ubiquitylation and turnover of p53 under normal, unstressed circumstances. In response to cellular stress, such as DNA damage, the Mdm2–p53 interaction is disrupted. Part of the mechanism of uncoupling p53 from Mdm2-mediated degradation involves hypo-phosphorylation of a cluster of phosphorylated serine residues in the central acidic domain of Mdm2. Here, we show that two of the residues within this domain that are phosphorylated in vivo, Ser-260 and Ser-269, are phosphorylated by CK2 in vitro. Treatment of cells with the CK2 inhibitor, 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), leads to the induction of p53 and downstream targets of p53 including Mdm2 itself and p21. These data are consistent with the idea that CK2-mediated phosphorylation of Mdm2 may regulate Mdm2-mediated p53 turnover.  相似文献   

5.
The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling through its activity in the destruction complex with Axin, GSK3β, and CK1 that targets β-catenin/Armadillo (β-cat/Arm) for proteosomal degradation. The destruction complex forms macromolecular particles we termed the destructosome. Whereas APC functions in the complex through its ability to bind both β-cat and Axin, we hypothesize that APC proteins play an additional role in destructosome assembly through self-association. Here we show that a novel N-terminal coil, the APC self-association domain (ASAD), found in vertebrate and invertebrate APCs, directly mediates self-association of Drosophila APC2 and plays an essential role in the assembly and stability of the destructosome that regulates β-cat degradation in Drosophila and human cells. Consistent with this, removal of the ASAD from the Drosophila embryo results in β-cat/Arm accumulation and aberrant Wnt pathway activation. These results suggest that APC proteins are required not only for the activity of the destructosome, but also for the assembly and stability of this macromolecular machine.  相似文献   

6.

Background

Insights into how the Frizzled/LRP6 receptor complex receives, transduces and terminates Wnt signals will enhance our understanding of the control of the Wnt/ß-catenin pathway.

Methodology/Principal Findings

In pursuit of such insights, we performed a genome-wide RNAi screen in Drosophila cells expressing an activated form of LRP6 and a β-catenin-responsive reporter. This screen resulted in the identification of Bili, a Band4.1-domain containing protein, as a negative regulator of Wnt/β-catenin signaling. We found that the expression of Bili in Drosophila embryos and larval imaginal discs significantly overlaps with the expression of Wingless (Wg), the Drosophila Wnt ortholog, which is consistent with a potential function for Bili in the Wg pathway. We then tested the functions of Bili in both invertebrate and vertebrate animal model systems. Loss-of-function studies in Drosophila and zebrafish embryos, as well as human cultured cells, demonstrate that Bili is an evolutionarily conserved antagonist of Wnt/β-catenin signaling. Mechanistically, we found that Bili exerts its antagonistic effects by inhibiting the recruitment of AXIN to LRP6 required during pathway activation.

Conclusions

These studies identify Bili as an evolutionarily conserved negative regulator of the Wnt/β-catenin pathway.  相似文献   

7.
mdm2 and mdmx oncogenes play essential yet non-redundant roles in synergistic inactivation of the tumor suppressor, p53. While Mdm2 inhibits p53 activity mainly by augmenting its ubiquitination, the functional role of Mdmx on p53 ubiquitination remains obscure. In transfected H1299 cells, Mdmx augmented Mdm2-mediated ubiquitination of p53. In in vitro ubiquitination assays, the Mdmx/Mdm2 heteromeric complex, in comparison to the Mdm2 homomer, showed enhanced ubiquitinase activity toward p53 and the reduced auto-ubiquitination of Mdm2. Alteration of the substrate specificity via binding to Mdmx may contribute to efficient ubiquitination and inactivation of p53 by Mdm2.

Structured summary

MINT-7219995: P53 (uniprotkb:P04637) physically interacts (MI:0914) with Ubiquitin (uniprotkb:P62988) by anti bait coimmunoprecipitation (MI:0006)MINT-7220023: Ubiquitin (uniprotkb:P62988) physically interacts (MI:0914) with P53 (uniprotkb:P04637) by pull down (MI:0096)  相似文献   

8.
9.
10.
SUMO (small ubiquitin-like modifier) modification plays multiple roles in several cellular processes. Sumoylation is reversibly regulated by SUMO-specific proteases. SUMO-specific proteases have recently been implicated in cell proliferation and early embryogenesis, but the underlying mechanisms remain unknown. Here, we show that a nucleolar SUMO-specific protease, SMT3IP1/SENP3, controls the p53–Mdm2 pathway. We found that SMT3IP1 interacts with p53 and Mdm2, and desumoylates both proteins. Overexpression of SMT3IP1 in cells resulted in the accumulation of Mdm2 in the nucleolus and increased stability of the p53 protein. In addition, SMT3IP1 bound to the acidic domain of Mdm2, which also mediates the p53 interaction, and competed with p53 for binding. Increasing expression of SMT3IP1 suppressed Mdm2-mediated p53 ubiquitination and subsequent proteasomal degradation. Interestingly, the desumoylation activity of SMT3IP1 was not necessary for p53 stabilization. These results suggest that SMT3IP1 is a new regulator of the p53–Mdm2 pathway.  相似文献   

11.
12.
Mdm2 and MdmX are structurally related p53-binding proteins that function as critical negative regulators of p53 activity in embryonic and adult tissue. The overexpression of Mdm2 or MdmX inhibits p53 tumor suppressor functions in vitro, and the amplification of Mdm2 or MdmX is observed in human cancers retaining wild-type p53. We now demonstrate a surprising role for MdmX in suppressing tumorigenesis that is distinct from its oncogenic ability to inhibit p53. The deletion of MdmX induces multipolar mitotic spindle formation and the loss of chromosomes from hyperploid p53-null cells. This reduction in chromosome number, not observed in p53-null cells with Mdm2 deleted, correlates with increased cell proliferation and the spontaneous transformation of MdmX/p53-null mouse embryonic fibroblasts in vitro and with an increased rate of spontaneous tumorigenesis in MdmX/p53-null mice in vivo. These results indicate that MdmX has a p53-independent role in suppressing oncogenic cell transformation, proliferation, and tumorigenesis by promoting centrosome clustering and bipolar mitosis.  相似文献   

13.
Comment on: Dolezelova P, et al. Cell Cycle 2012; 11:953–62Mechanisms controlling the p53 regulatory network remain the focus of numerous investigations in hopes of identifying more robust cancer therapies. Both Mdm2 and MdmX are found overexpressed in tumors with wild-type p53 and represent a key molecular device modulating p53 function. Thus, examining the interplay between these three proteins becomes highly relevant in the search for new pharmacological interventions in oncology.Mdm2 is a RING-type E3 ubiquitin ligase capable of forming homo-oligomers and hetero-oligomerization with MdmX via the extreme C termini of their RING domains. Since its discovery 15 years ago, MdmX has been assigned many roles in the regulation of p53, either on its own or in concert with Mdm2. While clearly an essential negative regulator or p53 in development, its lack of intrinsic ubiquitin ligase activity has made the mechanism of p53 regulation more elusive than in the case of Mdm2. The capacity of MdmX to stimulate Mdm2-mediated p53 ubiquitination was first reported in 2003.1 Subsequent biochemical comparisons of the activity of Mdm2–MdmX complexes showed that not only does the presence of MdmX in the complex alter the substrate specificity of the holo-enzyme, it also allows for poly-ubiquitin chain formation on p53 (modification required for nuclear exclusion and degradation of p53).2-4In vitro observations describing the importance of the MdmX RING domain in regulation of p53 turnover have now gained in vivo experimental support from the two knock-in animal models.5,6 Consistent with the notion that MdmX is an essential component of p53 polyubiquitination/proteasomal degradation pathway, mice expressing either a point mutant in the MdmX RING domain or a RING domain deletion mutant succumbed to a p53-dependent embryonic lethality. These data implicate the RING domain of MdmX as the sole region of importance in the ability of MdmX to regulate p53 and, by extension, the Mdm2-MdmX complex (and not the Mdm2 homodimer), as the principle negative regulator of p53 activity during development.The growing body of evidence describing the presence of MdmX in the complex as crucial for target selectivity as well as the processivity of the holoezyme somewhat flies in the face of the existing structural data. Two published structures of the Mdm2 homodimer and Mdm2/MdmX heterodimer indicate virtually no difference in the complexes.7,8 In the absence of structural differences, how then are such significant differences in function accomplished? A hypothesis unifying structural and functional data is brought forth by a very intriguing study from the Uldrijan group, which systematically looks at the differences between complex formation and activity of Mdm2 and MdmX.9 Phylogenetic analysis showed that the last cystein of the RING domain is followed by exactly 13 amino acids in all Mdm orthologs of vertebrate origin. Based on this, the authors hypothesized that not only the sequence of the C-terminal tails, but also their exact length are of central importance to the function of the complexes. Subsequent investigation of the ability of Mdm2 and MdmX proteins, which have been extended at the C terminus by 5, 14 or 18 amino acids, was designed to test the importance of the length of the C-terminal extensions. To the researchers surprise, when examined based on their ability to hetero-oligomerize and ubiquitinate p53, Mdm2 proteins behaved differently depending on whether the oligomeric partner was Mdm2 or MdmX. Dolezelova et al. present unexpected experimental evidence for the heterocomplex being structurally and functionally distinct from the Mdm2 homodimer, while providing a mechanism for the observed in vivo functional differences between the complexes. Although the work casts slight doubt on the complete accuracy of the existing structures, it nicely aligns with the above-mentioned results, showing the singular importance of the MdmX RING domain in the activity of the holoenzyme. In light of these results, additional structural studies that will take in to account reported differences between the complexes will undoubtedly be informative and contribute to our understanding of the biochemistry of RING-type ubiquitin ligases and the mechanisms regulating p53 in cells.  相似文献   

14.

Background

Preeclampsia (PE) is characterized by exaggerated apoptosis of the villous trophoblast of placental villi. Since p53 is a critical regulator of apoptosis we hypothesized that excessive apoptosis in PE is mediated by abnormal expression of proteins participating in the p53 pathway and that modulation of the p53 pathway alters trophoblast apoptosis in vitro.

Methods

Fresh placental villous tissue was collected from normal pregnancies and pregnancies complicated by PE; Western blotting and real-time PCR were performed on tissue lysate for protein and mRNA expression of p53 and downstream effector proteins, p21, Bax and caspases 3 and 8. To further assess the ability of p53 to modulate apoptosis within trophoblast, BeWo cells and placental villous tissue were exposed to the p53-activator, Nutlin-3, alone or in combination with the p53-inhibitor, Pifithrin-α (PFT- α). Equally, Mdm2 was knocked-down with siRNA.

Results

Protein expression of p53, p21 and Bax was significantly increased in pregnancies complicated by PE. Conversely, Mdm2 protein levels were significantly depleted in PE; immunohistochemistry showed these changes to be confined to trophoblast. Reduction in the negative feedback of p53 by Mdm2, using siRNA and Nutlin-3, caused an imbalance between p53 and Mdm2 that triggered apoptosis in term villous explants. In the case of Nutlin, this was attenuated by Pifithrin-α.

Conclusions

These data illustrate the potential for an imbalance in p53 and Mdm2 expression to promote excessive apoptosis in villous trophoblast. The upstream regulation of p53 and Mdm2, with regard to exaggerated apoptosis and autophagy in PE, merits further investigation.  相似文献   

15.
The p53 protein and its negative regulator the ubiquitin E3 ligase Mdm2 have been shown to be conserved from the Placazoan to man. In common with D.melanogaster and C.elegans, there is a single copy of the p53 gene in T.adhaerens, while in the vertebrates three p53-like genes can be found: p53 , p63 and p73. The Mdm2 gene is not present within the fully sequenced and highly annotated genomes of C.elegans and D.melanogaster. However, it is present in the Placazoan and the presence of multiple distinct p53 genes in the Sea anemone N.vectensis led us to examine the genomes of other phyla for p53 and Mdm2-like genes. We report here the discovery of an Mdm2-like gene and two distinct p53 like genes in the Arachnid Ioxodes scapularis (Northern Deer Tick). The two predicted Deer Tick p53 proteins are much more highly related to the human p53 protein in sequence than are the fruit fly and nematode proteins. One of the Deer tick genes encodes a p53 protein that is initiated within the DNA binding domain of p53 and shows remarkable homology to the newly described N-terminally truncated delta isoforms of human and zebrafish p53.  相似文献   

16.
The RING domain of Mdm2 contains a conserved Walker A or P loop motif that is a characteristic of nucleotide binding proteins. We found that Mdm2 binds adenine-containing nucleotides preferentially and that nucleotide binding leads to a conformational change in the Mdm2 C terminus. Although nucleotide binding is not required for Mdm2 E3 ubiquitin ligase activity, we show that nucleotide binding-defective P loop mutants are impaired in p14(ARF)-independent nucleolar localization both in vivo and in vitro. Consistent with this, ATP-bound Mdm2 is preferentially localized to the nucleolus. Indeed, we identify a unique amino acid substitution in the P loop motif (K454A) that uncouples nucleolar localization and E3 ubiquitin ligase activity of Mdm2 and leads to upregulation of the E3 activity both in human cells and in Caenorhabditis elegans. We propose that nucleotide binding-facilitated nucleolar localization of Mdm2 is an evolutionarily conserved regulator of Mdm2 activity.  相似文献   

17.
18.
Hematopoietic stem cells provide an indispensible source for replenishing the blood with all its constituents throughout the organism's lifetime. Mice with a compromised hematopoietic stem cell compartment cannot survive. p53, a major tumor suppressor gene, has been implicated in regulation of hematopoiesis. In particular, p53 plays a role in homeostasis by regulating HSC quiescence and self renewal. We recently utilized a hypomorphic p53515C allele in conjunction with Mdm2, a negative regulator of p53 to gain insights into the role of p53 in hematopoietic regulation. Our analyses revealed that p53515C/515CMdm2-/- double mutant mice die soon after birth due to hematopoietic failure. Further mechanistic studies revealed that in the absence of Mdm2, ROS induced postnatal p53 activity depletes hematopoietic stem cells, progenitors and differentiated cells.  相似文献   

19.
20.
Coordination of cell death and survival is crucial during embryogenesis and adulthood, and alteration of this balance can result in degeneration or cancer. Growth factor receptors such as Met can activate phosphatidyl-inositol-3' kinase (PI3K), a major intracellular mediator of growth and survival. PI3K can then antagonize p53-triggered cell death, but the underlying mechanisms are not fully understood. We used genetic and pharmacological approaches to uncover Met-triggered signaling pathways that regulate hepatocyte survival during embryogenesis. Here, we show that PI3K acts via mTOR (Frap1) to regulate p53 activity both in vitro and in vivo. mTOR inhibits p53 by promoting the translation of Mdm2, a negative regulator of p53. We also demonstrate that the PI3K effector Akt is required for Met-triggered Mdm2 upregulation, in addition to being necessary for the nuclear translocation of Mdm2. Inhibition of either mTOR or Mdm2 is sufficient to block cell survival induced by Hgf-Met in vitro. Moreover, in vivo inhibition of mTOR downregulates Mdm2 protein levels and induces p53-dependent apoptosis. Our studies identify a novel mechanism for Met-triggered cell survival during embryogenesis, involving translational regulation of Mdm2 by mTOR. Moreover, they reinforce mTOR as a potential drug target in cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号