首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Cancer epidemiology》2014,38(4):408-413
Background and aimPrevious evidence has shown that microRNA (miR)-224 may function as an onco-miRNA in hepatocellular carcinoma (HCC) cells by activating AKT signaling. However, little is known about the clinical significance of the combined expression of miR-224 and phosphorylated-AKT (pAKT) on human HCC. The aim of this study was to investigate the synergistical influence of miR-224 and pAKT on clinical characteristics and prognosis in patients with HCC.MethodsOne-hundred and thirty HCC patients who had undergone curative liver resection were selected. In situ hybridization and immunohistochemistry were respectively performed to detect the expression of miR-224 and pAKT in the respective tumors.ResultsCompared with the adjacent nonneoplastic liver tissues, the expression levels of miR-224 and pAKT protein in HCC tissues were both significantly increased (both P < 0.001). In addition, the combined upregulation of miR-224 and pAKT protein was significantly associated with serum AFP (P = 0.01), tumor stage (P = 0.002) and tumor grade (P = 0.008). Moreover, HCC patients highly expressing both miR-224 and pAKT protein had worse 5-year disease-free survival and 5-year overall survival (both P < 0.001). Furthermore, the Cox proportional hazards model showed that the combined upregulation of miR-224 and pAKT protein (miR-224-high/pAKT-high) may be independent poor prognostic factors for both 5-year disease-free survival (P = 0.008) and 5-year overall survival (P = 0.01) in HCC.ConclusionThese results indicate for the first time that miR-224 upregulation and AKT activation may synergistically associate with tumor progression of HCC. The combined high expression of miR-224 and pAKT may be a potential indicator for predicting unfavorable prognosis in HCC patients.  相似文献   

3.
Background & aim: Human kinesin superfamily proteins (KIFs) are a conserved class of microtubule-dependent molecular motor proteins with adenosine triphosphatase activity and motion characteristics. As a member of KIFs, KIF14 plays an important role in the regulation of cell cycle and mitotic progression. Deregulation of KIF14 has been found in several human malignancies and also has been demonstrated to be involved in tumor progression and related to patient survival. The aim of this study was to investigate the clinicopathological significance of KIF14 expression in glioma. Methods: Real-time quantitative RT-PCR assay was performed to detect KIF14 mRNA expression, and Western blot and immunohistochemistry analyses were performed to detect KIF14 protein expression in human gliomas and non-neoplastic brain tissues, respectively. Then, the association of KIF14 immunostaining with clinicopathological factors and prognosis of glioma patients was also statistically analyzed. Results: KIF14 mRNA and protein expression were respectively increased 5.5- and 4.2-fold on average in glioma tissues relative to non-neoplastic brain tissues (both P < 0.001). Additionally, both KIF14 mRNA and protein expression increased with ascending pathological grade. Then, the high KIF14 immunostaining in glioma tissues was significantly associated with advanced pathological grade (P = 0.008), low Karnofsky performance score (KPS) (P = 0.02), high mitotic index (P = 0.005) and Ki-67 index (P = 0.008). Furthermore, both univariate and multivariate Cox regression analyses determined that KIF14 overexpression effectively predicted decreased overall survival in patients with gliomas. Conclusions: These findings offer the first convinced evidence that KIF14 expression in gliomas is tumor-specific and increased in more aggressive tumors. KIF14 might function as a candidate prognostic marker for human gliomas.  相似文献   

4.
microRNA-9 (miR-9) has been found to be upregulated along with tumor progression of gliomas by microarray-based expression profiling, and also be strongly linked to glioblastoma subtypes. However, its prognostic value in glioma is still elusive. miR-9 expression in human gliomas and nonneoplastic brain tissues was measured by real-time quantitative RT-PCR assay. miR-9 expression in glioma tissues was significantly higher than that in corresponding nonneoplastic brain tissues (P < 0.001). The increased expression of miR-9 was more frequently observed in glioma tissues with high WHO grade than those with low WHO grade tissues (P = 0.001). The expression levels of miR-9 in glioma tissues with low Karnofsky performance score (KPS) were also significantly higher than those with high KPS (P = 0.008). Moreover, the overall survival of glioma patients with high miR-9 expression was obviously lower than that with low miR-9 expression (P < 0.001). Multivariate analysis further showed that high miR-9 expression was an independent prognostic factor for overall survival in glioma patients (P = 0.01). More importantly, the subgroup analyses indicated that the overall survival of glioma patients with high WHO grade (III–IV) was significantly worse for high miR-9 expression group than for low miR-9 expression group (P < 0.001), but no significant difference was found for patients with low WHO grade (I–II). These findings suggest for the first time that the increased expression of miR-9 may play an important role in tumor progression in human gliomas. miR-9 might be a useful marker for predicting the clinical outcome of glioma patients, especially for advanced subtypes.  相似文献   

5.
《Translational oncology》2017,10(2):271-279
OBJECTIVE: The present study aimed to explore the expression profiles of circular RNAs (circRNAs) in glioblastoma multiforme (GBM) in an attempt to identify potential core genes in the pathogenesis of this tumor. METHODS: Differentially expressed circRNAs were screened between tumor tissues from five GBM patients and five normal brain samples using Illumina Hiseq. Bioinformatics analysis was used to analyze their potential function. CircBRAF was further detected in different WHO grades glioma tissues and normal brain tissues. Kaplan-Meier curves and multivariate Cox's analysis were used to analyze the association between circBRAF expression level and prognosis of glioma patients. RESULTS: A total of 1411 differentially expressed circRNAs were identified in GBM patients including 206 upregulated circRNAs and 1205 downregulated circRNAs. Differential expression of circRNAs was closely associated with the biological process and molecular function. The downregulated circRNAs were mainly associated with ErbB and Neurotrophin signaling pathways. Moreover, the expression level of circBRAF in normal brain tissues was significantly higher than that in glioma tissues (P < .001). CircBRAF was significantly lower in glioma patients with high pathological grade (WHO III & IV) than those with low grade (WHO I & II) (P < .001). Cox analysis revealed that high circBRAF expression was an independent biomarker for predicting good progression-free survival and overall survival in glioma patients (HR = 0.413, 95% CI 0.201-0.849; HR = 0.299, 95% CI 0.135-0.661; respectively). CONCLUSION: The present study identified a profile of dysregulated circRNAs in GBM. Bioinformatics analysis showed that dysregulated circRNAs might be associated with tumorigenesis and development of GBM. In addition, circBRAF could severe as a biomarker for predicting pathological grade and prognosis in glioma patients.  相似文献   

6.
7.
8.
AimProtein 14-3-3γ is an important member of the 14-3-3 family that play important roles in the regulation of various cellular processes. The aim of the study is to investigate the association between 14-3-3γ expression and the clinicopathological features of patients with breast cancer.MethodsThe expression of 14-3-3γ was detected by Western blot in both foci of breast cancer and adjacent non-cancerous tissues. In addition, 14-3-3γ expression was analyzed by immunohistochemistry in 60 clinicopathologically characterized breast cancer cases. The association of 14-3-3γ expression with survival of the patients were analyzed.ResultsThe expression level of 14-3-3γ protein in breast cancer were significantly higher than that in non-cancerous mammary gland tissues. Moreover, high expression of 14-3-3γ correlated with tumor size and tumor grade (all P < 0.05). Patients with high 14-3-3γ expression had worse overall survival rate than that with low expression (P < 0.05). Furthermore, multivariate analysis showed that 14-3-3γ expression was an independent predictor of overall survival (HR, 0.196; 95%CI, 0.043–0.892; P = 0.035).ConclusionsOur data suggest for the first time that the increased expression of 14-3-3γ in breast cancer is associated significantly with tumor progression and poor prognosis. 14-3-3γ may be a novel and potential prognostic marker for breast cancer.  相似文献   

9.
Modern diffusion MR protocols allow one to acquire the multi-shell diffusion data with high diffusion weightings in a clinically feasible time. In the present work we assessed three diffusion approaches based on diffusion and kurtosis tensor imaging (DTI, DKI), and neurite orientation dispersion and density imaging (NODDI) as possible biomarkers for human brain glioma grade differentiation based on the one diffusion protocol. We used three diffusion weightings (so called b-values) equal to 0, 1000, and 2500 s/mm2 with 60 non-coplanar diffusion directions in the case of non-zero b-values. The patient groups of the glioma grades II, III, and IV consist of 8 subjects per group. We found that DKI, and NODDI scalar metrics can be effectively used as glioma grade biomarkers with a significant difference (p < 0.05) for grading between low- and high-grade gliomas, in particular, for glioma II versus glioma III grades, and glioma III versus glioma IV grades. The use of mean/axial kurtosis and intra-axonal fraction/orientation dispersion index metrics allowed us to obtain the most feasible and reliable differentiation criteria. For example, in the case of glioma grades II, III, and IV the mean kurtosis is equal to 0.31, 0.51, and 0.90, and the orientation dispersion index is equal to 0.14, 0.30, and 0.59, respectively. The limitations and perspectives of the biophysical diffusion models based on intra-/extra-axonal compartmentalisation for glioma differentiation are discussed.  相似文献   

10.
BACKGROUNDImportance of androgen receptor (AR) as an independent prognostic marker in Pakistani women with breast cancer (BCa) remains unexplored. Our aim was to identify the expression and potential prognostic value of AR, its upstream regulator (pAkt) and target gene (pPTEN) in invasive BCa.METHODSThis study used a cohort of 200 Pakistani women with invasive BCa diagnosed during 2002-2011. Expression of AR, pAkt and pPTEN was determined on formalin fixed paraffin embedded tissue sections by immunohistochemistry. The association of AR, pAkt and pPTEN with clinicopathological parameters was determined. Survival analyses were undertaken on patients with ≥ 5 years of follow-up (n = 82).RESULTSExpression of AR, pAkt and pPTEN was observed in 47.5%, 81.3% and 50.6% of patients, respectively. AR-expressing tumors were low or intermediate in grade (P < .001) and expressed ER (P = .002) and PR (P = .001). Patients with AR+ tumors had significantly higher OS (Mean OS = 10.2 ± 0.465 years) compared to patients with AR? tumors (Mean OS = 5.8 ± 0.348 years) (P = .047). Furthermore, AR-positivity was associated with improved OS in patients receiving endocrine therapy (P = .020). Patients with AR+ /pAkt+ /pPTEN? tumors, had increased OS (Mean OS = 7.1 ± 0.535 years) compared to patients with AR?/pAkt+/pPTEN? tumors (Mean OS = 5.1 ± 0.738 years).CONCLUSIONAR-expressing tumors are frequently characterized by low or intermediate grade tumors, expressing ER and PR. In addition, expression of AR, pAkt and pPTEN, could be considered in prognostication of patients with invasive BCa.  相似文献   

11.
Glioblastoma multiforme (GBM) is considered the most lethal intracranial tumor and the median survival time is approximately 14 months. Although some glioma cells present radioresistance, radiotherapy has been the mainstay of therapy for patients with malignant glioma. The activation of P2X7 receptor (P2X7R) is responsible for ATP-induced death in various cell types. In this study, we analyzed the importance of ATP-P2X7R pathway in the radiotherapy response P2X7R silenced cell lines, in vivo and human tumor samples. Both glioma cell lines used in this study present a functional P2X7R and the P2X7R silencing reduced P2X7R pore activity by ethidium bromide uptake. Gamma radiation (2 Gy) treatment reduced cell number in a P2X7R-dependent way, since both P2X7R antagonist and P2X7R silencing blocked the cell cytotoxicity caused by irradiation after 24 h. The activation of P2X7R is time-dependent, as EtBr uptake significantly increased after 24 h of irradiation. The radiotherapy plus ATP incubation significantly increased annexin V incorporation, compared with radiotherapy alone, suggesting that ATP acts synergistically with radiotherapy. Of note, GL261 P2X7R silenced-bearing mice failed in respond to radiotherapy (8 Gy) and GL261 WT-bearing mice, that constitutively express P2X7R, presented a significant reduction in tumor volume after radiotherapy, showing in vivo that functional P2X7R expression is essential for an efficient radiotherapy response in gliomas. We also showed that a high P2X7R expression is a good prognostic factor for glioma radiosensitivity and survival probability in humans. Our data revealed the relevance of P2X7R expression in glioma cells to a successful radiotherapy response, and shed new light on this receptor as a useful predictor of the sensitivity of cancer patients to radiotherapy and median survival.  相似文献   

12.
BackgroundElevated plasma vitamin B12 levels (cobalamin, Cbl) are associated with increased short-term cancer risk among patients referred for this laboratory measurement. We aimed to assess prognosis in cancer patients with elevated plasma Cbl.MethodsWe conducted a population-based cohort study using data from Danish medical registries during 1998–2014. The study included 25,017 patients with a cancer diagnosis and Cbl levels of 200–600 pmol/L (reference/normal range), 601–800 pmol/L and >800 pmol/L measured up to one year prior to diagnosis, and a comparison cohort of 61,988 cancer patients without a plasma Cbl measurement. Patients treated with Cbl were excluded. Survival probability was assessed using Kaplan–Meier curves. Mortality risk ratios (MRR) were computed using Cox proportional hazard regression, adjusted for age, sex, calendar year, cancer stage and comorbidity, scored using the Charlson comorbidity index.ResultsSurvival probabilities were lower among patients with elevated Cbl levels than among patients with normal levels and among members of the comparison cohort [(1-year survival,%) Cbl: 200–600 pmol/L: 69.3%; 601–800 pmol/L: 49.6%; >800 pmol/L: 35.8%; comparison cohort: 72.6%]. Thirty-day mortality was elevated for patients with Cbl levels of 601–800 pmol/L or >800 pmol/L, compared to patients with levels of 200–600 pmol/L [(MRR (95% confidence interval): 601–800 pmol/L vs. 200–600 pmol/L: 1.9 (1.6–2.2); >800 pmol/L vs. 200–600 pmol/L: 2.7 (2.4–3.1)]. This association remained robust for 31–90-day and 91–365-day mortality, showing similar dose-response patterns.ConclusionCancer patients with elevated Cbl levels had higher mortality than those with normal Cbl levels. These findings may have clinical significance for assessing the prognosis of cancer patients.  相似文献   

13.
BackgroundDNA repair mechanisms play a major role in cancer risk and progression. Germline variants in DNA repair genes may result in altered gene function and/or activity, thereby causing inter-individual differences in a patient's tumor recurrence capacity. In genes of the DNA repair pathway the gene variants RAD51 rs1801320 G > C, XRCC2 rs3218536 G > A and XPD rs13181 A > C have been previously related to genetic predisposition and prognosis of various cancer entities. In this study we investigated the association between these polymorphisms and time to recurrence (TTR) and overall survival (OS) in soft-tissue sarcoma (STS) patients after curative surgery.MethodsTwo hundred sixty STS patients were included in this retrospective study. Germline DNA was genotyped by 5′-exonuclease (TaqMan) technology. Kaplan Meier curves and multivariate Cox proportional models were calculated for TTR and OS.ResultsA statistically significant association was observed between tumor grade and adjuvant radiotherapy and TTR and between tumor grade and OS. No association was found between RAD51 rs1801320 G > C, XRCC2 rs3218536 G > A and XPD rs13181 A > C and TTR and OS in univariate and multivariate analysis.ConclusionOur results underline a prognostic effect of tumor grade and adjuvant radiotherapy in STS patients but indicate no association between RAD51 rs1801320 G > C, XRCC2 rs3218536 G > A and XPD rs13181 A > C and clinical outcome in STS patients after curative surgery.  相似文献   

14.
15.
16.
Free radicals play a major role in gliomas. By combining immuno-spin-trapping (IST) and molecular magnetic resonance imaging (mMRI), in vivo levels of free radicals were detected within mice bearing orthotopic GL261 gliomas. The nitrone spin trap DMPO (5,5-dimethyl pyrroline N-oxide) was administered prior to injection of an anti-DMPO probe (anti-DMPO antibody covalently bound to a bovine serum albumin (BSA)–Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)–biotin MRI contrast agent) to trap tumor-associated free radicals. mMRI detected the presence of anti-DMPO adducts by either a significant sustained increase (p < 0.001) in MR signal intensity or a significant decrease (p < 0.001) in T1 relaxation, measured as %T1 change. In vitro assessment of the anti-DMPO probe indicated a significant decrease (p < 0.0001) in T1 relaxation in GL261 cells that were oxidatively stressed with hydrogen peroxide, compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised brain tissues. As a negative control a non-specific IgG antibody covalently bound to the albumin–Gd-DTPA–biotin construct was used. DMPO adducts were also confirmed in tumor tissue from animals administered DMPO, compared to non-tumor brain tissue. GL261 gliomas were found to have significantly increased malondialdehyde (MDA) protein adducts (p < 0.001) and 3-nitrotyrosine (3-NT) (p < 0.05) compared to normal mouse brain tissue, indicating increased oxidized lipids and proteins, respectively. Co-localization of the anti-DMPO probe with either 3-NT or 4-hydroxynonenal was also observed. This is the first report regarding the detection of in vivo levels of free radicals from a glioma model.  相似文献   

17.
The current treatment therapies available for malignant gliomas are inadequate. There is an urgent need to develop more effective therapies by characterizing the molecular pathogenesis of the disease. Over expression of platelet-derived growth factor (PDGF) ligands and receptors have been reported in malignant gliomas. Platelet-derived growth factor associated protein-1 (PDAP-1) is reported to modulate the mitogenic activity of PDGF ligands, but to date, there is no information concerning its role in PDGF-mediated glioma cell proliferation. This study aimed to characterize the role of PDAP-1 in PDGF-mediated glioma proliferation. The expression of PDAP-1 was observed to be significantly increased (p< 0.05) in grade IV glioma tissue and cell lines compared to grade III. siRNA-mediated knockdown of PDAP-1 reduced the expression of PDGF-B and its downstream genes (Akt1/Protein kinase B (PKB) and phosphoinositide-dependent kinase-1 (PDK1) by up to 50%. In PDAP-1 knockdown glioma cells, more than a twofold reduction was also observed in the level of phosphorylated Akt. Interestingly, knockdown of PDAP-1 in combination with PDGF-B antibody inhibited glioma cell proliferation through activation of Caspase 3/7 and 9. We also demonstrate that PDAP-1 co-localizes with PDGF-B in the cytoplasm of glioma cells, and an interaction between both of the proteins was established. Collectively, these findings suggest that the expression of PDAP-1 is associated with disease malignancy, and its inhibition reduced the proliferation of malignant glioma cells through down-regulation of PDGF-B/Akt/PDK1 signaling. Thus, this study establishes PDAP-1 as an effecter of PDGF signaling in glioma cells and suggests that it could also be a promising therapeutic target.  相似文献   

18.
MicroRNAs (miRNA) are small non-coding RNAs that inhibit gene expression through binding to complementary messenger RNA sequences. miRNAs have been predicted to target genes important for pancreas development, proper endocrine cell function and metabolism. We previously described that miRNA-7 (miR-7) was the most abundant and differentially expressed islet miRNA, with 200-fold higher expression in mature human islets than in acinar tissue. Here we have analyzed the temporal and spatial expression of miR-7 in human fetal pancreas from 8 to 22 weeks of gestational age (wga). Human fetal (8–22 wga) and adult pancreases were processed for immunohistochemistry, in situ hybridization, and quantitative RT-PCR of miRNA and mRNA. miR-7 was expressed in the human developing pancreas from around 9 wga and reached its maximum expression levels between 14 and 18 wga, coinciding with the exponential increase of the pancreatic endocrine hormones. Throughout development miR-7 expression was preferentially localized to endocrine cells and its expression persisted in the adult pancreas. The present study provides a detailed analysis of the spatiotemporal expression of miR-7 in developing human pancreas. The specific localization of miR-7 expression to fetal and adult endocrine cells indicates a potential role for miR-7 in endocrine cell differentiation and/or function. Future functional studies of a potential role for miR-7 function in islet cell differentiation and physiology are likely to identify novel targets for the treatment of diabetes and will lead to the development of improved protocols for generating insulin-producing cells for cell replacement therapy.  相似文献   

19.
BackgroundTelomere length in blood or buccal cell DNA has been associated with risk of various cancers. Glioma can be a highly malignant brain tumor and has few known risk factors. Genetic variants in or near RTEL1 and TERT, key components of telomere biology, are associated with glioma risk. Therefore, we evaluated the association between relative telomere length (RTL) and glioma in a prospective study.Materials and methodsWe performed a nested case-control study within the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. RTL was determined by quantitative PCR on blood or buccal cell DNA obtained at least 2 years prior to diagnosis from 101 individuals with glioma cases. Healthy controls (n = 198) were matched to cases (2:1) on age, gender, smoking status, calendar year, and DNA source. Conditional logistic regression was used to investigate the association between RTL and glioma.ResultsAs expected, RTL declined with increasing age in both cases and controls. There was no statistically significant association between RTL and glioma overall. An analysis stratified by gender suggested that short RTL (1st tertile) in males was associated with glioma (odds ratio, [OR] = 2.29, 95% confidence interval [CI] 1.02–5.11); this association was not observed for females (OR = 0.41, 95% CI 0.14–1.17).ConclusionsThis prospective study did not identify significant associations between RTL and glioma risk, but there may be gender-specific differences. Larger, prospective studies are needed to evaluate these findings.  相似文献   

20.
Hypoxia stimulates angiogenesis under a variety of pathological conditions, including malignant tumors by inducing expression of angiogenic factors such as VEGFA. Surprisingly, here we report significant association between down-regulation of a new angiogenic factor AGGF1 and high-grade urothelial carcinoma. The proportion of strong AGGF1 expression cases was significantly lower in the high-grade urothelial carcinoma group than that in the low-grade urothelial carcinoma group (P = 1.40 × 10 5) or than that in the normal urothelium tissue group (P = 2.11 × 10 4). We hypothesized that tumor hypoxia was responsible for differential expression of the AGGF1 protein in low- and high-grade urothelial carcinomas, and therefore investigated the molecular regulatory mechanism for AGGF1 expression under hypoxia. Under hypoxic conditions, AGGF1 protein levels declined without any change in mRNA levels and protein stability. Hypoxia-induced down-regulation of AGGF1 was mediated by miR-27a. Overexpression of miR-27a suppressed AGGF1 expression through translational inhibition, but not by RNA degradation. Moreover, the hypoxia-induced decrease of AGGF1 expression disappeared after miR-27a expression was inhibited. Furthermore, down-regulation of AGGF1 reduced hypoxia-induced apoptosis in cancer cells. Taken together, the results of this study indicate that (1) hypoxia down-regulates expression of the AGGF1 protein, but not AGGF1 mRNA, by inducing expression of miR-27a; (2) Down-regulation of AGGF1 had an apparent protective role for cancer cells under hypoxia; (3) Down-regulation of the AGGF1 protein confers a significant risk of high-grade human urothelial bladder carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号