首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Hox proteins provide axial positional information and control segment morphology in development and evolution. Yet how they specify morphological traits that confer segment identity and how axial positional information interferes with intrasegmental patterning cues during organogenesis remain poorly understood. We have investigated the control of Drosophila posterior spiracle morphogenesis, a segment-specific structure that forms under Abdominal-B (AbdB) Hox control in the eighth abdominal segment (A8). We show that the Hedgehog (Hh), Wingless (Wg) and Epidermal Growth Factor Receptor (Egfr) pathways provide specific inputs for posterior spiracle morphogenesis and act in a genetic network made of multiple and rapidly evolving Hox/signalling interplays. A major function of AbdB during posterior spiracle organogenesis is to reset A8 intrasegmental patterning cues, first by reshaping wg and rhomboid expression patterns, then by reallocating the Hh signal and later by initiating de novo expression of the posterior compartment gene engrailed in anterior compartment cells. These changes in expression patterns confer axial specificity to otherwise reiteratively used segmental patterning cues, linking intrasegmental polarity and acquisition of segment identity.  相似文献   

4.
5.
A survey of genomic DNA from the polychaeteChaetopterus variopedatuswas conducted using the polymerase chain reaction. Twelve unique homeobox-containing gene fragments were recovered. Phylogenetic analysis indicates that seven of the fragments are from genes belonging to Hox homeobox classes. Other fragments show orthology with Xlox, caudal, and Prh homeobox classes, with two fragments not definitely assignable to a homeobox class by our analysis. Orthology with gene sequences reported for the polychaeteCtenodrilus serratus,by Dick and Buss (1994), was calculated and indicated that at least eight of theC. variopedatusfragments are homologous to these previously reported sequences. Tabulation of the Hox gene relationships suggest that polychaetes have representative genes of each of the Hox cognate groups exceptAbd-B.This conclusion further suggests that the Hox cluster in the basal protostome ancestor had already undergone the gene duplications leading to the complete complement of homeotic genes known inDrosophila,with the possible loss ofAbd-Bin the polychaete lineage.  相似文献   

6.
7.
8.
Hox genes that determine anteroposterior body axis formation in all bilaterians are often found to have partially overlapping expression pattern. Since posterior genes dominate over anterior Hox genes in the region of co-expression, the anterior Hox genes are thought to have no function in such regions. In this study we show that two Hox genes have distinct and essential functions in the same cell. In Drosophila, the three Hox genes of the bithorax complex, Ubx, abd-A and Abd-B, show coexpression during embryonic development. Here, we show that in early pupal abdominal epithelia, Ubx does not coexpress with abd-A and Abd-B, while abd-A and Abd-B continue to coexpress in the same nuclei. The abd-A and Abd-B are expressed in both histoblast nest cells and larval epithelial cells of early pupal abdominal epithelia. Further functional studies demonstrate that abd-A is required in histoblast nest cells for their proliferation and suppression of Ubx to prevent first abdominal segment like features in posterior segments while in larval epithelial cells it is required for their elimination. We also observed that these functions of abd-A are required in its exclusive as well as the coexpression domain with that of Abd-B. The expression of Abd-B is required in histoblast nest cells for their identity while it is dispensable in the larval epithelial cells. The higher level of Abd-B in the seventh abdominal segment, that down-regulates abd-A expression, leads this segment to be absent in males or of smaller size in females. We also show that abd-A in histoblast nest cells positively regulates expression of wingless for the formation of the abdominal epithelia. Our study reveals an exception to the rule of posterior prevalence and shows that two different Hox genes have distinct functions in the same cell, which is essential for the development of abdominal epithelia.  相似文献   

9.
Highlights? Abd-B directs the earliest steps of Drosophila left/right asymmetry establishment ? Abd-B directly regulates expression of the dextral determinant-encoding gene myoID ? Abd-B controls the two opposite dextral and sinistral left/right pathways ? Abd-B absence leads to the symmetrical development of normally asymmetric organs  相似文献   

10.
The evolutionary success of the largest animal phylum, Arthropoda, has been attributed to tagmatization, the coordinated evolution of adjacent metameres to form morphologically and functionally distinct segmental regions called tagmata. Specification of regional identity is regulated by the Hox genes, of which 10 are inferred to be present in the ancestor of arthropods. With six different posterior segmental identities divided into two tagmata, the bauplan of scorpions is the most heteronomous within Chelicerata. Expression domains of the anterior eight Hox genes are conserved in previously surveyed chelicerates, but it is unknown how Hox genes regionalize the three tagmata of scorpions. Here, we show that the scorpion Centruroides sculpturatus has two paralogues of all Hox genes except Hox3, suggesting cluster and/or whole genome duplication in this arachnid order. Embryonic anterior expression domain boundaries of each of the last four pairs of Hox genes (two paralogues each of Antp, Ubx, abd-A and Abd-B) are unique and distinguish segmental groups, such as pectines, book lungs and the characteristic tail, while maintaining spatial collinearity. These distinct expression domains suggest neofunctionalization of Hox gene paralogues subsequent to duplication. Our data reconcile previous understanding of Hox gene function across arthropods with the extreme heteronomy of scorpions.  相似文献   

11.
JAK/STAT signalling in vertebrates is activated by multiple cytokines and growth factors. By contrast, the Drosophila genome encodes for only three related JAK/STAT ligands, Upd, Upd2 and Upd3. Identifying the differences between these three ligands will ultimately lead to a greater understanding of this disease-related signalling pathway and its roles in development. Here, we describe the analysis of the least well characterised of the Upd-like ligands, Upd3. We show that in tissue culture-based assays Upd3-GFP is secreted from cells and appears to interact with the extracellular matrix (ECM) in a similar manner to Upd, while still non-autonomously activating JAK/STAT signalling. Quantification of each of the Upd-like ligands in conditioned media has allowed us to determine the activity of equal amounts of each ligand on JAK/STAT ex vivo and reveals that Upd is the most potent ligand in this system. Finally, investigations into the effects of ectopic expression of Upd3 in vivo have confirmed its ability to activate pathway signalling at long-distance.  相似文献   

12.
The homeotic Abdominal-B (Abd-B) gene expression depends on a modular cis-regulatory region divided into discrete functional domains (iab) that control the expression of the gene in a particular segment of the fly. These domains contain regulatory elements implicated in both initiation and maintenance of homeotic gene expression and elements that separate the different domains. In this paper we have performed an extensive analysis of the iab-6 regulatory region, which regulates Abd-B expression at abdominal segment A6 (PS11), and we have characterized two new polycomb response elements (PREs) within this domain. We report that PREs at Abd-B cis-regulatory domains present a particular chromatin structure which is nuclease accessible all along Drosophila development and both in active and repressed states. We also show that one of these regions contains a dCTCF and CP190 dependent activity in transgenic enhancer-blocking assays, suggesting that it corresponds to the Fab-6 boundary element of the Drosophila bithorax complex.  相似文献   

13.
14.
15.
Abnormalities in the JAK2/STAT3 pathway are involved in the pathogenesis of colorectal cancer (CRC), including apoptosis. However, the exact mechanism by which dysregulated JAK2/STAT3 signalling contributes to the apoptosis has not been clarified. To investigate the role of both JAK2 and STAT3 in the mechanism underlying CRC apoptosis, we inhibited JAK2 with AG490 and depleted STAT3 with a small interfering RNA. Our data showed that inhibition of JAK2/STAT3 signalling induced CRC cellular apoptosis via modulating the Bcl-2 gene family, promoting the loss of mitochondrial transmembrane potential (Δψm) and the increase of reactive oxygen species. In addition, our results demonstrated that the translocation of cytochrome c (Cyt c), caspase activation and cleavage of poly (ADP-ribose) polymerase (PARP) were present in apoptotic CRC cells after down-regulation of JAK2/STAT3 signalling. Moreover, inhibition of JAK2/STAT3 signalling suppressed CRC xenograft tumour growth. We found that JAK2/STAT3 target genes were decreased; meanwhile caspase cascade was activated in xenograft tumours. Our findings illustrated the biological significance of JAK2/STAT3 signalling in CRC apoptosis, and provided novel evidence that inhibition of JAK2/STAT3 induced apoptosis via the mitochondrial apoptotic pathway. Therefore, JAK2/STAT3 signalling may be a potential target for therapy of CRC.  相似文献   

16.
In insects, products of the male reproductive tract are essential for initiating and maintaining the female post-mating response (PMR). The PMR includes changes in egg laying, receptivity to courting males, and sperm storage. In Drosophila, previous studies have determined that the main cells of the male accessory gland produce some of the products required for these processes. However, nothing was known about the contribution of the gland''s other secretory cell type, the secondary cells. In the course of investigating the late functions of the homeotic gene, Abdominal-B (Abd-B), we discovered that Abd-B is specifically expressed in the secondary cells of the Drosophila male accessory gland. Using an Abd-B BAC reporter coupled with a collection of genetic deletions, we discovered an enhancer from the iab-6 regulatory domain that is responsible for Abd-B expression in these cells and that apparently works independently from the segmentally regulated chromatin domains of the bithorax complex. Removal of this enhancer results in visible morphological defects in the secondary cells. We determined that mates of iab-6 mutant males show defects in long-term egg laying and suppression of receptivity, and that products of the secondary cells are influential during sperm competition. Many of these phenotypes seem to be caused by a defect in the storage and gradual release of sex peptide in female mates of iab-6 mutant males. We also found that Abd-B expression in the secondary cells contributes to glycosylation of at least three accessory gland proteins: ovulin (Acp26Aa), CG1656, and CG1652. Our results demonstrate that long-term post-mating changes observed in mated females are not solely induced by main cell secretions, as previously believed, but that secondary cells also play an important role in male fertility by extending the female PMR. Overall, these discoveries provide new insights into how these two cell types cooperate to produce and maintain a robust female PMR.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号