首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Enterohemorrhagic E. coli (EHEC) serogroup O145 is regarded as one of the major EHEC serogroups involved in severe infections in humans. EHEC O145 encompasses motile and non-motile strains of serotypes O145:H25 and O145:H28. Sequencing the fliC-genes associated with the flagellar antigens H25 and H28 revealed the genetic diversity of the fliCH25 and fliCH28 gene sequences in E. coli. Based on allele discrimination of these fliC-genes real-time PCR tests were designed for identification of EHEC O145:H25 and O145:H28. The fliCH25 genes present in O145:H25 were found to be very similar to those present in E. coli serogroups O2, O100, O165, O172 and O177 pointing to their common evolution but were different from fliCH25 genes of a multiple number of other E. coli serotypes. In a similar way, EHEC O145:H28 harbor a characteristic fliCH28 allele which, apart from EHEC O145:H28, was only found in enteropathogenic (EPEC) O28:H28 strains that shared some common traits with EHEC O145:H28. The real time PCR-assays targeting these fliCH25[O145] and fliCH28[O145] alleles allow better characterization of EHEC O145:H25 and EHEC O145:H28. Evaluation of these PCR assays in spiked ready-to eat salad samples resulted in specific detection of both types of EHEC O145 strains even when low spiking levels of 1–10 cfu/g were used. Furthermore these PCR assays allowed identification of non-motile E. coli strains which are serologically not typable for their H-antigens. The combined use of O-antigen genotyping (O145wzy) and detection of the respective fliCH25[O145] and fliCH28[O145] allele types contributes to improve identification and molecular serotyping of E. coli O145 isolates.  相似文献   

2.
PCR-based assays for detecting enterohemorrhagic Escherichia coli serogroups O26 and O113 were developed by targeting the wzx (O-antigen flippase) and the wzy (O-antigen polymerase) genes found in the O-antigen gene cluster of each organism. The PCR assays were specific for the respective serogroups, as there was no amplification of DNA from non-O26 and non-O113 E. coli serogroups or from other bacterial genera tested. Using the PCR assays, we were able to detect the organisms in seeded apple juice inoculated at concentration levels as low as ≤10 CFU/ml. The O26- and O113-specific PCR assays can potentially be used for typing E. coli O26 and O113 serogroups; these assays will offer an advantage to food and environmental microbiology laboratories in terms of identifying these non-O157 serogroups by replacing antigen-based serotyping.  相似文献   

3.
The Escherichia coli O45 O-antigen gene cluster of strain O45:H2 96-3285 was sequenced, and conventional (singleplex), multiplex, and real-time PCR assays were designed to amplify regions in the wzx (O-antigen flippase) and wzy (O-antigen polymerase) genes. In addition, PCR assays targeting the E. coli O55 wzx and wzy genes were designed based on previously published sequences. PCR assays targeting E. coli O45 showed 100% specificity for this serogroup, whereas by PCR assays specific for E. coli O55, 97/102 strains serotyped as E. coli O55 were positive for wzx and 98/102 for wzy. Multiplex PCR assays targeting the E. coli O45 and the E. coli O55 wzx and wzy genes were used to detect the organisms in fecal samples spiked at levels of 106 and 108 CFU/0.2 g feces. Thus, the PCR assays can be used to detect and identify E. coli serogroups O45 and O55.  相似文献   

4.
Escherichia coli strains of serogroup O26 comprise two distinct groups of pathogens, characterized as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC). Among the several genes related to type III secretion system-secreted effector proteins, espK was found to be highly specific for EHEC O26:H11 and its stx-negative derivative strains isolated in European countries. E. coli O26 strains isolated in Brazil from infant diarrhea, foods, and the environment have consistently been shown to lack stx genes and are thus considered atypical EPEC. However, no further information related to their genetic background is known. Therefore, in this study, we aimed to discriminate and characterize these Brazilian O26 stx-negative strains by phenotypic, genetic, and biochemical approaches. Among 44 isolates confirmed to be O26 isolates, most displayed flagellar antigen H11 or H32. Out of the 13 nonmotile isolates, 2 tested positive for fliCH11, and 11 were fliCH8 positive. The identification of genetic markers showed that several O26:H11 and all O26:H8 strains tested positive for espK and could therefore be discriminated as EHEC derivatives. The presence of H8 among EHEC O26 and its stx-negative derivative isolates is described for the first time. The interaction of three isolates with polarized Caco-2 cells and with intestinal biopsy specimen fragments ex vivo confirmed the ability of the O26 strains analyzed to cause attaching-and-effacing (A/E) lesions. The O26:H32 strains, isolated mostly from meat, were considered nonvirulent. Knowledge of the virulence content of stx-negative O26 isolates within the same serotype helped to avoid misclassification of isolates, which certainly has important implications for public health surveillance.  相似文献   

5.
Aims: To develop real‐time PCR assays targeting genes encoding the flagellar antigens (fliC) and intimin subtypes (eae) associated with the five most clinically important serotypes of enterohaemorrhagic Escherichia coli (EHEC), i.e. O26:H11, O103:H2, O111:H8, O145:H28 and O157:H7. Methods and Results: Primers and probes specific to fliCH2, fliCH7, fliCH8, fliCH11, fliCH28, eae‐β1, eae‐γ1, eae‐ε and eae‐θ were combined in simplex and multiplex 5′‐nuclease PCR assays. The specificity of the assays was assessed on 201 bacterial strains and the sensitivity determined on serially diluted EHEC genomes. The developed PCR assays were found to be highly specific and detected as few as five EHEC genome equivalents per reaction. Furthermore, it was possible to detect the five major EHEC serotypes in cheese samples inoculated at concentration levels of ≤5 CFU per 25 g after overnight enrichment using the PCR assays. Conclusions: The PCR assays developed here were found to be sensitive and specific for the reliable detection of genes encoding the flagellar antigens and intimin variants belonging to the five most clinically relevant EHEC serotypes. Significance and Impact of the Study: Application of real‐time PCR assays should improve the identification of foods contaminated by EHEC and facilitate the molecular typing of these organisms.  相似文献   

6.

Background

Although serotype O157:H7 is the predominant enterohemorrhagic Escherichia coli (EHEC), outbreaks of non-O157 EHEC that cause severe foodborne illness, including hemolytic uremic syndrome have increased worldwide. In fact, non-O157 serotypes are now estimated to cause over half of all the Shiga toxin-producing Escherichia coli (STEC) cases, and outbreaks of non-O157 EHEC infections are frequently associated with serotypes O26, O45, O103, O111, O121, and O145. Currently, there are no complete genomes for O145 in public databases.

Results

We determined the complete genome sequences of two O145 strains (EcO145), one linked to a US lettuce-associated outbreak (RM13514) and one to a Belgium ice-cream-associated outbreak (RM13516). Both strains contain one chromosome and two large plasmids, with genome sizes of 5,737,294 bp for RM13514 and 5,559,008 bp for RM13516. Comparative analysis of the two EcO145 genomes revealed a large core (5,173 genes) and a considerable amount of strain-specific genes. Additionally, the two EcO145 genomes display distinct chromosomal architecture, virulence gene profile, phylogenetic origin of Stx2a prophage, and methylation profile (methylome). Comparative analysis of EcO145 genomes to other completely sequenced STEC and other E. coli and Shigella genomes revealed that, unlike any other known non-O157 EHEC strain, EcO145 ascended from a common lineage with EcO157/EcO55. This evolutionary relationship was further supported by the pangenome analysis of the 10 EHEC str ains. Of the 4,192 EHEC core genes, EcO145 shares more genes with EcO157 than with the any other non-O157 EHEC strains.

Conclusions

Our data provide evidence that EcO145 and EcO157 evolved from a common lineage, but ultimately each serotype evolves via a lineage-independent nature to EHEC by acquisition of the core set of EHEC virulence factors, including the genes encoding Shiga toxin and the large virulence plasmid. The large variation between the two EcO145 genomes suggests a distinctive evolutionary path between the two outbreak strains. The distinct methylome between the two EcO145 strains is likely due to the presence of a BsuBI/PstI methyltransferase gene cassette in the Stx2a prophage of the strain RM13514, suggesting a role of horizontal gene transfer-mediated epigenetic alteration in the evolution of individual EHEC strains.  相似文献   

7.
Enterohemorrhagic Escherichia coli (EHEC) is the causative agent of bloody diarrhea and extraintestinal sequelae in humans, most importantly hemolytic-uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). Besides the bacteriophage-encoded Shiga toxin gene (stx), EHEC harbors the locus of enterocyte effacement (LEE), which confers the ability to cause attaching and effacing lesions. Currently, the vast majority of EHEC infections are caused by strains belonging to five O serogroups (the “big five”), which, in addition to O157, the most important, comprise O26, O103, O111, and O145. We hypothesize that these four non-O157 EHEC serotypes differ in their phylogenies. To test this hypothesis, we used multilocus sequence typing (MLST) to analyze a large collection of 250 isolates of these four O serogroups, which were isolated from diseased as well as healthy humans and cattle between 1952 and 2009. The majority of the EHEC isolates of O serogroups O26 and O111 clustered into one sequence type complex, STC29. Isolates of O103 clustered mainly in STC20, and most isolates of O145 were found within STC32. In addition to these EHEC strains, STC29 also included stx-negative E. coli strains, termed atypical enteropathogenic E. coli (aEPEC), yet another intestinal pathogenic E. coli group. The finding that aEPEC and EHEC isolates of non-O157 O serogroups share the same phylogeny suggests an ongoing microevolutionary scenario in which the phage-encoded Shiga toxin gene stx is transferred between aEPEC and EHEC. As a consequence, aEPEC strains of STC29 can be regarded as post- or pre-EHEC isolates. Therefore, STC29 incorporates phylogenetic information useful for unraveling the evolution of EHEC.  相似文献   

8.
9.
Shiga toxin (Stx)-producing Escherichia coli (STEC) are important causes of diarrhoea and the haemolytic uremic syndrome (HUS). The most common STEC serotype implicated worldwide is E. coli O157:H7 that is diagnosed using procedures based on its typical phenotypic feature, the lack of sorbitol fermentation. In addition to E. coli O157:H7, a variety of non-O157:H7 STEC strains that usually ferment sorbitol and are thus missed by using the diagnostic protocol for E.coli O157:H7 have been isolated from patients. Among these sorbitol-fermenting (SF) non-O157:H7 STEC, SF E. coli O157:H and non-O157 STEC strains of serogroups O26, O103, O111 and O145 have emerged as significant causes of HUS and diarrhoea in continental Europe and have been associated with human disease in other parts of the world. Microbiological diagnosis of non-O157:H7 STEC strains is difficult due to their serotype diversity and the absence of a simple biochemical property that distinguishes such strains from the physiological intestinal microflora. Screening for non-O157:H7 STEC and their isolation from stools is presently based on the detection of Stx production or stx genes that are common characteristics of such strains. Molecular subtyping of the most frequent non-O157 STEC demonstrated that strains of serogroups O26, O103 and O111 belong to their own clonal lineages and show unique virulence profiles. SF STEC O157:H strains that have been isolated mostly in Central Europe represent a new clone within E. coli O157 serogroup which has its own typical combination of virulence factors. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
A multiplex PCR procedure that detects six major virulence genes, fliC, stx1, stx2, eae, rfbE, and hlyA, in Escherichia coli O157:H7 was developed. Analyses of the available sequences of the six major virulence genes and the published primers allowed us to develop the six-gene, multiplex PCR protocol that maintained the specificity of each primer pair. The resulting six bands for fliC, stx1, stx2, eae, rfbE, and hlyA were even and distinct with product sizes of 949, 655, 477, 375, 296, and 199 bp, respectively. The procedure was validated with a total of 221 E. coli strains that included 4 ATCC, 84 cattle, and 57 human E. coli O157:H7 strains as well as 76 non-O157 cattle and human E. coli strains. The results of all 221 strains were similar to the results generated by established multiplex PCR methods that involved two separate reactions to detect five virulence genes (stx1, stx2, eae, fliC, and hlyA). Specificity of the O antigen was indicated by amplification of only O157, and not O25, O26, O55, O78, O103, O111, O127, and O145 E. coli serotypes. Sensitivity tests showed that the procedure amplified genes from a fecal sample spiked with a minimum of 104 CFU/g (10 cells/reaction) of E. coli O157. After a 6-h enrichment of E. coli O157-spiked samples, a sensitivity level of 10 CFU/g was achieved.  相似文献   

11.
Escherichia coli O104:H4, an hybrid pathotype of Shiga toxigenic and enteroaggregative E. coli, involved in a major foodborne outbreak in Germany in 2011, has not been detected in cattle feces. Serogroup O104 with H type other than H4 has been reported to cause human illnesses, but their prevalence and characteristics in cattle have not been reported. Our objectives were to determine the prevalence of E. coli O104 in feces of feedlot cattle, by culture and PCR detection methods, and characterize the isolated strains. Rectal fecal samples from a total of 757 cattle originating from 29 feedlots were collected at a Midwest commercial slaughter plant. Fecal samples, enriched in E. coli broth, were subjected to culture and PCR methods of detection. The culture method involved immunomagnetic separation with O104-specific beads and plating on a selective chromogenic medium, followed by serogroup confirmation of pooled colonies by PCR. If pooled colonies were positive for the wzxO104 gene, then colonies were tested individually to identify wzxO104-positive serogroup and associated genes of the hybrid strains. Extracted DNA from feces were also tested by a multiplex PCR to detect wzxO104-positive serogroup and associated major genes of the O104 hybrid pathotype. Because wzxO104 has been shown to be present in E. coli O8/O9/O9a, wzxO104-positive isolates and extracted DNA from fecal samples were also tested by a PCR targeting wbdDO8/O9/O9a, a gene specific for E. coli O8/O9/O9a serogroups. Model-adjusted prevalence estimates of E. coli O104 (positive for wzxO104 and negative for wbdDO8/O9/O9a) at the feedlot level were 5.7% and 21.2%, and at the sample level were 0.5% and 25.9% by culture and PCR, respectively. The McNemar’s test indicated that there was a significant difference (P < 0.01) between the proportions of samples that tested positive for wzxO104 and samples that were positive for wzxO104, but negative for wbdDO8/O9/O9a by PCR and culture methods. A total of 143 isolates, positive for the wzxO104, were obtained in pure culture from 146 positive fecal samples. Ninety-two of the 143 isolates (64.3%) also tested positive for the wbdDO8/O9/O9a, indicating that only 51 (35.7%) isolates truly belonged to the O104 serogroup (positive for wzxO104 and negative for wbdDO8/O9/O9a). All 51 isolates tested negative for eae, and 16 tested positive for stx1 gene of the subtype 1c. Thirteen of the 16 stx1-positive O104 isolates were from one feedlot. The predominant serotype was O104:H7. Pulsed-field gel electrophoresis analysis indicated that stx1-positive O104:H7 isolates had 62.4% homology to the German outbreak strain and 67.9% to 77.5% homology to human diarrheagenic O104:H7 strains. The 13 isolates obtained from the same feedlot were of the same PFGE subtype with 100% Dice similarity. Although cattle do not harbor the O104:H4 pathotype, they do harbor and shed Shiga toxigenic O104 in the feces and the predominant serotype was O104:H7.  相似文献   

12.
Aims: To develop a real‐time PCR assay targeting the Escherichia coli flagellar antigen H21 for identification and surveillance of clinically important Shiga toxin‐producing E. coli (STEC) serotypes classified in seropathotype C. Methods and Results: The fliC allele of STEC O91:H21 strain B2F1 was amplified and sequenced. The nucleotide sequence obtained was compared with fliC genes of E. coli O157:H21, O8:H21 and O113:H21 strains. A pair of oligonucleotide primers and a TaqMan® minor groove binder probe specific for fliC‐H21 were designed and used in a 5′‐nuclease PCR assay. This method was evaluated using a panel of 138 diverse bacterial strains and was shown to be 100% specific for H21. PCR amplification of fliC‐H21 from one cell per reaction mixture was possible, and an initial inoculum of 10 STEC H21 colony‐forming units per 25 g of ground beef was detected after overnight enrichment. Conclusions: The PCR assay developed was found to be highly sensitive and specific for the identification and detection of E. coli H21 strains in ground beef. Significance and Impact of the Study: The real‐time PCR assay targeting the H21 flagellar antigen described here offers a valuable method for the rapid detection and molecular typing of pathogenic STEC H21 strains in food.  相似文献   

13.
Municipal sewage influent was screened for the presence of the virulence genes encoding Shiga-like toxins SLT-I and SLT-II (slt-I and slt-II) and intimin (eaeA) and those involved in biosynthesis of O157 (rfbE) and H7 (fliC) antigens by multiplex PCR to simultaneously identify the enterohemorrhagic Escherichia coli (EHEC) O157:H7 and its virulence factors in a single reaction. The screening was carried out monthly from October 2004 to September 2005. Direct PCR analysis using total DNA from sewage concentrate showed the presence of at least one virulence gene in 100% samples (n = 12). Sixty six percent of these samples were also positive for rfbE (O157) gene and fliC (H7) gene. The PCR amplification of these genes was possible when the concentration was above 20 cells ml−1. From the multiplex PCR of the isolates following plating on Cefixime-Tellurite Sorbitol MacConkey (CT-SMAC) agar to detect non-sorbitol fermenting (NSF) colonies (n = 600), one E. coli strain carrying slt-II gene and two strains of E. coli O157:H7 carrying slt-I were detected. The results show that municipal sewage represents a potential reservoir of EHEC. CT-SMAC agar was proved to have limited E. coli O157:H7 selectivity and only 0.005% (3/600) sensitivity for sewage samples due to the high frequency (43%) of NSF strains in sewage. The enrichment of sewage sample in modified E. coli broth (mEC) increased the sensitivity of PCR resulting in the clearer amplification of five genes. Amplification of target cell type in mEC broth implied that EHEC were present in sewage in a culturable and hence potentially infectious state. However, pre-enrichment did not affect the selectivity of CT-SMAC because frequency of NSF colonies remained the same as that obtained without enrichment. The study, therefore, underscores the need for more sensitive screening techniques that can be routinely employed for the regular monitoring of sewage influent.  相似文献   

14.
The sfp cluster, encoding Sfp fimbriae and located in the large plasmid of sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157 (pSFO157), has been considered a unique characteristic of this organism. We discovered and then characterized the sfp cluster in EHEC O165:H25/NM (nonmotile) isolates of human and bovine origin. All seven strains investigated harbored a complete sfp cluster (carrying sfpA, sfpH, sfpC, sfpD, sfpJ, sfpF, and sfpG) of 6,838 bp with >99% nucleotide sequence homology to the sfp cluster of SF EHEC O157:NM. The sfp cluster in EHEC O165:H25/NM strains was located in an ~80-kb (six strains) or ~120-kb (one strain) plasmid which differed in structure, virulence genes, and sfp flanks from pSFO157. All O165:H25/NM strains belonged to the same multilocus sequence type (ST119) and were only distantly phylogenetically related to SF EHEC O157:NM (ST11). The highly conserved sfp cluster in different clonal backgrounds suggests that this segment was acquired independently by EHEC O165:H25 and SF EHEC O157:NM. Its presence in an additional EHEC serotype extends the diagnostic utility of PCR targeting sfpA as an easy and efficient approach to seek EHEC in patients' stools. The reasons for the convergence of pathogenic EHEC strains on a suite of virulence loci remain unknown.  相似文献   

15.
To study the molecular evolution of flagellin, the protein subunit specifying flagellar (H) antigens, the fliC genes from 15 pathogenic strains of Escherichia coli were amplified by PCR and sequenced. Comparison of fliC sequences of H6 and H7 strains revealed that alleles have a mosaic structure indicating the occurrence of past horizontal transfer of DNA segments between strains. The close similarity of H7 sequences also indicates the exchange of an entire fliC H7 allele between distant clonal lineages. In addition, the ratio of silent substitutions to amino acid replacements suggests that a short segment in the central region of fliC has been under positive selection in the divergence of H6 and H7 alleles. Phylogenetic analysis demonstrates that the fliC sequences of O157:H7 and O55:H7 serotypes are nearly identical and highly divergent from those of E. coli strains expressing H6 and H2 flagellar antigens. A nonmotile clone of sorbitol-fermenting O157 has rapidly accumulated multiple mutations in fliC, presumably as a result of the silencing of flagellin expression.  相似文献   

16.
Escherichia coli serogroups O5, O15, O26, O45, O55, O76, O91, O103, O104, O111, O113, O118, O121, O123, O128, O145, O146, O157, O165, O172, and O177 are the O-antigen forms of the most clinically relevant Shiga toxin-producing E. coli (STEC) serotypes. In this study, three multiplex PCR assays able to specifically detect these 21 serogroups were developed and validated. For this purpose, the O-antigen gene clusters of E. coli O5 and O76 were fully sequenced, their associated genes were identified on the basis of homology, and serogroup-specific primers were designed. After preliminary evaluation, these two primer pairs were proven to be highly specific and suitable for the development of PCR assays for O5 and O76 serogroup identification. Specific primers were also designed for serogroups O15, O45, O55, O91, O104, O113, O118, O123, O128, O146, O157, O165, O172, and O177 based on previously published sequences, and previously published specific primers for serogroups O26, O103, O111, O121, and O145 were also included. These 21 primer pairs were shown to be specific for their target serogroup when tested against E. coli type strains representing 169 known O-antigen forms of E. coli and Shigella and therefore suitable for being used in PCR assays for serogroup identification. In order to validate the three multiplex PCR assays, 22 E. coli strains belonging to the 21 covered serogroups and 18 E. coli strains belonging to other serogroups were screened in a double-blind test and their sensitivity was determined as 1 ng chromosomal DNA. The PCR assays developed in this study could be a faster, simpler, and less expensive strategy for serotyping of the most clinically relevant STEC strains in both clinical microbiology and public health laboratories, and so their development could benefit for clinical diagnosis, epidemiological investigations, surveillance, and control of STEC infections.  相似文献   

17.
Characterization of an Escherichia coli O157 strain collection (n = 42) derived from healthy Hungarian cattle revealed the existence of diverse pathotypes. Enteropathogenic E. coli (EPEC; eae positive) appeared to be the most frequent pathotype (n = 22 strains), 11 O157 strains were typical enterohemorrhagic E. coli (EHEC; stx and eae positive), and 9 O157 strains were atypical, with none of the key stx and eae virulence genes detected. EHEC and EPEC O157 strains all carried eae-gamma, tir-gamma, tccP, and paa. Other virulence genes located on the pO157 virulence plasmid and different O islands (O island 43 [OI-43] and OI-122), as well as espJ and espM, also characterized the EPEC and EHEC O157 strains with similar frequencies. However, none of these virulence genes were detected by PCR in atypical O157 strains. Interestingly, five of nine atypical O157 strains produced cytolethal distending toxin V (CDT-V) and carried genes encoding long polar fimbriae. Macro-restriction fragment enzyme analysis (pulsed-field gel electrophoresis) revealed that these E. coli O157 strains belong to four main clusters. Multilocus sequence typing analysis revealed that five housekeeping genes were identical in EHEC and EPEC O157 strains but were different in the atypical O157 strains. These results suggest that the Hungarian bovine E. coli O157 strains represent at least two main clones: EHEC/EPEC O157:H7/NM (nonmotile) and atypical CDT-V-producing O157 strains with H antigens different from H7. The CDT-V-producing O157 strains represent a novel genogroup. The pathogenic potential of these strains remains to be elucidated.Escherichia coli O157:H7 is a food- and waterborne zoonotic pathogen with serious effects on public health. E. coli O157:H7 causes diseases in humans ranging from uncomplicated diarrhea to hemorrhagic colitis and hemolytic-uremic syndrome (HUS) (30). Typically, enterohemorrhagic E. coli (EHEC) strains express two groups of important virulence factors: one or more Shiga toxins (Stx; also called verotoxins), encoded by lambda-like bacteriophages, and a pathogenicity island called the locus of enterocyte effacement (LEE) encoding all the proteins necessary for attaching and effacing lesions of epithelial cells (41). Comparative genomic studies of E. coli O157:H7 strains revealed extensive genomic diversity related to the structures, positions, and genetic contents of bacteriophages and the variability of putative virulence genes encoding non-LEE effector proteins (29, 43).Ruminants and, in particular, healthy cattle are the major reservoir of E. coli O157:H7, although the prevalence of O157:H7 strains in cattle may vary widely, as reviewed by Caprioli et al. (12). E. coli O157:H7 has been found to persist and remain infective in the environment for a long time, e.g., for at least 6 months in water trough sediments, which may be an important environmental niche.In Hungary, infections with E. coli O157 and other Shiga toxin-producing E. coli (STEC) strains in humans in cases of “enteritidis infectiosa” have been notifiable since 1998 on a case report basis. Up to now, the disease has been sporadic, and fewer than 100 (n = 83) cases of STEC infection among 2,700 suspect cases have been reported since 2001. However, until the present study, no systematic, representative survey of possible animal sources had been performed.In this study, our aim was to investigate healthy cattle in Hungary for the presence of strains of E. coli O157 and the genes encoding Shiga toxins (stx1 and stx2) and intimin (eae) and a wide range of putative virulence genes found in these strains. In addition, the phage type (PT) was determined, and pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used to further compare the strains at the molecular level. Shiga toxin and cytolethal distending toxin (CDT) production was also examined, and phage induction experiments were conducted. The high incidence of enteropathogenic E. coli (EPEC; eae-positive) O157:H7 strains and atypical (eae- and stx-negative) O157 strains indicates that cattle are a major reservoir of not only EHEC O157 but also EPEC O157 and atypical E. coli O157 strains. These atypical, non-sorbitol-fermenting O157 strains frequently produced CDT-V and may represent a novel O157 clade as demonstrated by MLST and PFGE.  相似文献   

18.
Culture-based methods to detect the six major non-O157 (O26, O45, O103, O111, O121 and O145) Shiga toxin-producing E. coli (STEC) are not well established. Our objectives of this study were to develop a culture-based method to detect the six non-O157 serogroups in cattle feces and compare the detection with a PCR method. Fecal samples (n = 576) were collected in a feedlot from 24 pens during a 12-week period and enriched in E. coli broth at 40° C for 6 h. Enriched samples were subjected to immunomagnetic separation, spread-plated onto a selective chromogenic medium, and initially pooled colonies, and subsequently, single colonies were tested by a multiplex PCR targeting six serogroups and four virulence genes, stx1, stx2, eae, and ehxA (culture method). Fecal suspensions, before and after enrichment, were also tested by a multiplex PCR targeting six serogroups and four virulence genes (PCR method). There was no difference in the proportions of fecal samples that tested positive (74.3 vs. 77.4%) for one or more of the six serogroups by either culture or the PCR method. However, each method detected one or more of the six serogroups in samples that were negative by the other method. Both culture method and PCR indicated that O26, O45, and O103 were the dominant serogroups. Higher proportions (P < 0.05) of fecal samples were positive for O26 (44.4 vs. 22.7%) and O121 (22.9 vs. 2.3%) serogroups by PCR than by the culture method. None of the fecal samples contained more than four serogroups. Only a small proportion of the six serogroups (23/640; 3.6%) isolated carried Shiga toxin genes. The culture method and the PCR method detected all six serogroups in samples negative by the other method, highlighting the importance of subjecting fecal samples to both methods for accurate detection of the six non-O157 STEC in cattle feces.  相似文献   

19.
Aims: To investigate the prevalence of traditional and emerging types of enteropathogenic (EPEC) and enterohaemorrhagic Escherichia coli (EHEC) strains in stool samples from children with diarrhoea and to characterize their virulence genes involved in the attaching and effacing (A/E) phenotype. Methods and Results: Serological and PCR‐based methods were used for detection and isolation of EPEC and EHEC strains from 861 stool samples from diarrhoeic children. Agglutination with traditional EPEC and EHEC O‐group‐specific antisera resulted in detection of 38 strains; 26 of these carried virulence factors of EPEC or EHEC. PCR screening for the eae gene resulted in isolation of 97 strains, five carried genes encoding Shiga toxins (stx), one carried the bfpA gene and 91 were atypical EPEC. The 97 EPEC and EHEC strains were divided into 36 O‐serogroups and 21 H‐types, only nine strains belonged to the traditional EPEC O‐groups O26, O55, O86 and O128. In contrast, EPEC serotypes O28:H28, O51:H49, O115:H38 and O127:H40 were found in multiple cases. Subtyping the virulence factors intimin, Tir and Tir‐cytoskeleton coupling effector protein (TccP)/TccP2 resulted in further classification of 93·8% of the 97 strains. Conclusions: Our findings show a clear advantage of the eae‐PCR over the serological detection method for identification of EPEC and EHEC strains from human patients. Significance and Impact of the Study: Molecular detection by the eae‐PCR followed by serotyping and virutyping is useful for monitoring trends in EPEC and EHEC infections and to discover their possible reservoirs.  相似文献   

20.
Rapid and specific detection of Shiga toxin-producing Escherichia coli (STEC) strains with a high level of virulence for humans has become a priority for public health authorities. This study reports on the development of a low-density macroarray for simultaneously testing the genes stx1, stx2, eae, and ehxA and six different nle genes issued from genomic islands OI-122 (ent, nleB, and nleE) and OI-71 (nleF, nleH1-2, and nleA). Various strains of E. coli isolated from the environment, food, animals, and healthy children have been compared with clinical isolates of various seropathotypes. The eae gene was detected in all enteropathogenic E. coli (EPEC) strains as well as in enterohemorrhagic E. coli (EHEC) strains, except in EHEC O91:H21 and EHEC O113:H21. The gene ehxA was more prevalent in EHEC (90%) than in STEC (42.66%) strains, in which it was unequally distributed. The nle genes were detected only in some EPEC and EHEC strains but with various distributions, showing that nle genes are strain and/or serotype specific, probably reflecting adaptation of the strains to different hosts or environmental niches. One characteristic nle gene distribution in EHEC O157:[H7], O111:[H8], O26:[H11], O103:H25, O118:[H16], O121:[H19], O5:H−, O55:H7, O123:H11, O172:H25, and O165:H25 was ent/espL2, nleB, nleE, nleF, nleH1-2, nleA. (Brackets indicate genotyping of the flic or rfb genes.) A second nle pattern (ent/espL2, nleB, nleE, nleH1-2) was characteristic of EHEC O103:H2, O145:[H28], O45:H2, and O15:H2. The presence of eae, ent/espL2, nleB, nleE, and nleH1-2 genes is a clear signature of STEC strains with high virulence for humans.Since the early 1980s, Shiga toxin-producing Escherichia coli (STEC) has emerged as a major cause of food-borne infections (17, 30). STEC can cause diarrhea in humans, and some STEC strains may cause life-threatening diseases, such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). On the basis of its human pathogenicity, this subset of STEC strains was also designated enterohemorrhagic E. coli (EHEC) (22, 25). Numerous cases of HC and HUS have been attributed to EHEC serotype O157:H7 strains, but it has now been recognized that other serotypes of STEC belong to the EHEC group. The STEC seropathotype classification is based upon the serotype association with human epidemics, HUS, and diarrhea and has been developed as a tool to assess the clinical and public health risks associated with non-O157 EHEC and STEC strains (18). Only a few serotypes of STEC have been reported as most frequently associated with severe disease in humans. Besides E. coli O157:[H7], five other serotypes, namely O26:[H11], O103:H2, O111:[H8], O121:[H19], and O145:[H28], account for the group of typical EHEC (25). (Brackets indicate genotyping of the flic or rfb genes; the absence of brackets indicates data obtained with the conventional serotyping approach using specific antisera, as described in Materials and Methods.) Atypical EHEC group strains of serotypes O91:[H21], O113:H21, and O104:H21 are less frequently involved in hemorrhagic diseases than typical EHEC but are a frequent cause of diarrhea (8, 12, 25). Recent data from Enter-Net, a global surveillance consortium of 35 countries that tracks enteric infectious diseases, showed that the number of human cases of illness caused by non-O157 EHEC increased globally by 60.5% between 2000 and 2005, while at the same time the number of cases linked to EHEC O157 increased by only 13% (1). In the past few years, new serotypes of EHEC that differ from those previously known as typical and atypical EHEC have emerged (6, 8, 23, 24, 31). These EHEC strains were identified as important causes of food-borne infections in humans and were described as “new emerging EHEC.”The production of Shiga toxin (Stx) by EHEC is the primary virulence trait responsible for HUS, but many E. coli non-O157:H7 strains that produce Stx do not cause HUS. Identification of human-virulent STEC by detection of unique stx genes may be misleading, since not all STEC strains are clinically significant for humans (11). Besides the ability to produce one or more types of Shiga toxins, typical EHEC strains harbor a genomic island called the “locus of enterocyte effacement” (LEE). Atypical EHEC strains are negative for the LEE but may carry other factors for colonization of the human intestine (6, 25). The LEE carries genes encoding functions for bacterial colonization of the gut and for destruction of the intestinal mucosa, thus contributing to the disease process (25). The LEE eae gene product intimin is directly involved in the attaching and effacing (A/E) process (37). The LEE includes regulatory elements, a type III secretion system (TTSS), secreted effector proteins, and their cognate chaperon (13, 29). In addition to the intimin, most of the typical EHEC strains harbor the plasmid-borne enterohemolysin (ehxA), which is considered an associated virulence factor (6, 25).A number of other pathogenicity island (PAI) candidates, including O island 122 (OI-122) and O island 71 (OI-71), have been found in EHEC and EPEC strains, but their role in disease is not fully clear. Within the EHEC group, both O157:H7 strains (19, 34) and non-O157 strains (18, 35) present a variable repertoire of virulence determinants, including a collection of non-LEE-encoded effector (nle) genes that encode translocated substrates of the type III secretion system (9, 20). Our objective was to identify type III secreted virulence factors that distinguish EHEC O157 and non-O157 strains constituting a severe risk for human health from STEC strains that are not associated with severe and epidemic disease, a concept called “molecular risk assessment” (MRA) by Coombes et al. (9). Supporting the MRA approach requires the development of diagnostic tests based on multiplex nucleic acid amplification and microfluidics-based detection using standardized platforms applicable in hospital service or public health laboratories. It is now feasible to develop low-density DNA arrays that can be used to examine the gene inventory from isolated strains, offering a genetic bar coding strategy. A recent innovation in this field is the introduction of the GeneSystems PCR technology (5, 36). In this study, we have developed a GeneDisc array designed for simultaneous detection of genes encoding Shiga toxins 1 and 2 (stx1 and stx2), intimins (eae), enterohemolysin (ehxA), and six different nle genes derived from genomic islands OI-71 and OI-122. We focused our efforts on the detection of the OI-122 genes, ent/espL2 (Z4326), nleB (Z4328), and nleE (Z4329), and the OI-71 genes, nleF (Z6020), nleH1-2 (Z6021), and nleA (Z6024). The macroarray presented here was evaluated for its specificity and ability to discriminate between STEC causing serious illness in humans and other E. coli strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号