共查询到20条相似文献,搜索用时 15 毫秒
1.
Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) Upregulates Survivin Expression in KSHV-Associated B-Lymphoma Cells and Contributes to Their Proliferation 下载免费PDF全文
Jie Lu Subhash C. Verma Masanao Murakami Qiliang Cai Pankaj Kumar Bingyi Xiao Erle S. Robertson 《Journal of virology》2009,83(14):7129-7141
2.
3.
4.
Caspases are enzymes belonging to a conserved family of cysteine-dependent aspartic-specific proteases that are involved in vital cellular processes and play a prominent role in apoptosis and inflammation. Determining all relevant protein substrates of caspases remains a challenging task. Over 1500 caspase substrates have been discovered in the human proteome according to published data and new substrates are discovered on a daily basis. To aid the discovery process we developed a caspase cleavage prediction method using the recently published curated MerCASBA database of experimentally determined caspase substrates and a Random Forest classification method. On both internal and external test sets, the ranking of predicted cleavage positions is superior to all previously developed prediction methods. The in silico predicted caspase cleavage positions in human proteins are available from a relational database: CaspDB. Our database provides information about potential cleavage sites in a verified set of all human proteins collected in Uniprot and their orthologs, allowing for tracing of cleavage motif conservation. It also provides information about the positions of disease-annotated single nucleotide polymorphisms, and posttranslational modifications that may modulate the caspase cleaving efficiency. 相似文献
5.
6.
7.
8.
Bin Yu Dora P. A. J. Fonseca Sara M. O'Rourke Phillip W. Berman 《Journal of virology》2010,84(3):1513-1526
The identification of vaccine immunogens able to elicit broadly neutralizing antibodies (bNAbs) is a major goal in HIV vaccine research. Although it has been possible to produce recombinant envelope glycoproteins able to adsorb bNAbs from HIV-positive sera, immunization with these proteins has failed to elicit antibody responses effective against clinical isolates of HIV-1. Thus, the epitopes recognized by bNAbs are present on recombinant proteins, but they are not immunogenic. These results led us to consider the possibility that changes in the pattern of antigen processing might alter the immune response to the envelope glycoprotein to better elicit protective immunity. In these studies, we have defined protease cleavage sites on HIV gp120 recognized by three major human proteases (cathepsins L, S, and D) important for antigen processing and presentation. Remarkably, six of the eight sites identified in gp120 were highly conserved and clustered in regions of the molecule associated with receptor binding and/or the binding of neutralizing antibodies. These results suggested that HIV may have evolved to take advantage of major histocompatibility complex (MHC) class II antigen processing enzymes in order to evade or direct the antiviral immune response.A major goal of HIV vaccine development is the development of immunogens that elicit protective antiviral antibody and cellular immune responses. However, after more than 25 years of research, vaccine immunogens able to elicit protective immunity in humans have yet to be described (11, 31). Although it has been possible to produce recombinant envelope proteins (gp120 and gp140) with many of the features of native virus proteins (e.g., complex glycosylation and the ability to bind CD4, chemokine receptors, and neutralizing antibodies), these antigens have not been able to elicit broadly neutralizing antibodies (bNAbs) or protective immune responses when used as immunogens (11, 32, 43, 50, 56, 74, 79). The fact that recombinant proteins can adsorb virus bNAbs from HIV-1-positive sera (59, 91) indicates that many recombinant envelope proteins are correctly folded but that the epitopes recognized by bNAbs are simply not immunogenic. Over the last decade, several different approaches have been employed to create immunogens able to elicit broadly neutralizing antibodies. These strategies have included efforts to duplicate and/or stabilize the oligomeric structure of HIV envelope proteins (5, 26, 87), the creation of minimal antigenic structures lacking epitopes that conceal important neutralizing sites (27, 46, 70, 89), and prime/boost strategies combining protein immunization with DNA immunization or infection with recombinant viruses in order to stimulate the endogenous synthesis and presentation of HIV immunogens (15, 29, 30, 83). However, none of these approaches has resulted in a clinically significant improvement in antiviral immunity or HIV vaccine efficacy. Efforts to elicit protective cellular immune responses (e.g., cytotoxic lymphocytes) by use of recombinant virus vaccines have likewise been disappointing (10, 61). In fact, such vaccines may have promoted HIV infection rather than inhibiting it (22, 23).In the present study, we describe the first steps in a new approach to reengineering the immunogenicity of HIV envelope proteins in order to improve the potency and specificity of humoral and cellular immune responses. The approach is based on defining the determinants of antigen processing and presentation of HIV envelope glycoproteins. Both humoral and cellular immune responses depend on proteolytic degradation of protein antigens prior to antigen presentation, mediated by professional antigen-presenting cells (APCs) such as macrophages, dendritic cells, and B cells (97). Normally, proteins of intracellular origin are processed by the proteasome, a 14- to 17-subunit protein complex located in the cytosol. Proteins of extracellular origin are processed in lysosomes or late endosomes of APCs. The resulting peptide epitopes are then loaded into major histocompatibility complex (MHC) class I or class II molecules and presented on the surfaces of APCs to CD8 or CD4 T cells. Within the endosomes and lysosomes of APCs, there are cathepsins, acid thiol reductase, and aspartyl endopeptidase. The enzymes perform two activities: degrading endocytosed protein antigens to liberate peptides for MHC class II binding (99) and removing the invariant chain chaperone (6, 94). Although all cathepsins can liberate epitopes from a diverse range of antigens (16), only cathepsins S and L have nonredundant roles in antigen processing in vivo (reviewed by Hsing and Rudensky [45]). Cathepsin L is expressed in thymic cortical epithelial cells but not in B cells or dendritic cells, while cathepsin S is found in all three types of APCs. Unlike cathepsins L and S, which are cysteine proteases and active at neutral pH, cathepsin D is an aspartic protease, is active at acidic pH, and participates in proteolysis and antigen presentation in connection with MHC class I and class II antigen presentation pathways established for CD4 and CD8 T cells. In considering the use of envelope proteins as potential vaccines, the route of immunization, formulation (e.g., adjuvants), protein folding, disulfide bonding, and glycosylation pattern all determine which peptides are available for MHC-restricted presentation.Previous studies provided evidence that gp120 was sensitive to digestion by cathepsins B, D, and L, but the specific cleavage sites were not defined (18). In the present study, we (i) describe the locations of eight protease cleavage sites on HIV-1 gp120 recognized by cathepsins L, S, and D, involved in antigen processing; (ii) determine the extent to which they are conserved; and (iii) evaluate the effect of cathepsin cleavage on the binding of gp120 to CD4-IgG and neutralizing antibodies. The results obtained provide new insights into the basis of envelope immunogenicity that may prove to be useful in the development of HIV vaccine antigens. 相似文献
9.
The replication of many RNA viruses involves the translation of polyproteins, whose processing by endopeptidases is a critical step for the release of functional subunits. P1 is the first protease encoded in plant potyvirus genomes; once activated by an as-yet-unknown host factor, it acts in cis on its own C-terminal end, hydrolyzing the P1-HCPro junction. Earlier research suggests that P1 cooperates with HCPro to inhibit host RNA silencing defenses. Using Plum pox virus as a model, we show that although P1 does not have a major direct role in RNA silencing suppression, it can indeed modulate HCPro function by its self-cleavage activity. To study P1 protease regulation, we used bioinformatic analysis and in vitro activity experiments to map the core C-terminal catalytic domain. We present evidence that the hypervariable region that precedes the protease domain is predicted as intrinsically disordered, and that it behaves as a negative regulator of P1 proteolytic activity in in vitro cleavage assays. In viral infections, removal of the P1 protease antagonistic regulator is associated with greater symptom severity, induction of salicylate-dependent pathogenesis-related proteins, and reduced viral loads. We suggest that fine modulation of a viral protease activity has evolved to keep viral amplification below host-detrimental levels, and thus to maintain higher long-term replicative capacity. 相似文献
10.
Evolutionary Dynamics of Human Toll-Like Receptors and Their Different Contributions to Host Defense
Luis B. Barreiro Meriem Ben-Ali Hlne Quach Guillaume Laval Etienne Patin Joseph K. Pickrell Christiane Bouchier Magali Tichit Olivier Neyrolles Brigitte Gicquel Judith R. Kidd Kenneth K. Kidd Alexandre Alcaïs Josiane Ragimbeau Sandra Pellegrini Laurent Abel Jean-Laurent Casanova Lluís Quintana-Murci 《PLoS genetics》2009,5(7)
Infectious diseases have been paramount among the threats to health and survival throughout human evolutionary history. Natural selection is therefore expected to act strongly on host defense genes, particularly on innate immunity genes whose products mediate the direct interaction between the host and the microbial environment. In insects and mammals, the Toll-like receptors (TLRs) appear to play a major role in initiating innate immune responses against microbes. In humans, however, it has been speculated that the set of TLRs could be redundant for protective immunity. We investigated how natural selection has acted upon human TLRs, as an approach to assess their level of biological redundancy. We sequenced the ten human TLRs in a panel of 158 individuals from various populations worldwide and found that the intracellular TLRs—activated by nucleic acids and particularly specialized in viral recognition—have evolved under strong purifying selection, indicating their essential non-redundant role in host survival. Conversely, the selective constraints on the TLRs expressed on the cell surface—activated by compounds other than nucleic acids—have been much more relaxed, with higher rates of damaging nonsynonymous and stop mutations tolerated, suggesting their higher redundancy. Finally, we tested whether TLRs have experienced spatially-varying selection in human populations and found that the region encompassing TLR10-TLR1-TLR6 has been the target of recent positive selection among non-Africans. Our findings indicate that the different TLRs differ in their immunological redundancy, reflecting their distinct contributions to host defense. The insights gained in this study foster new hypotheses to be tested in clinical and epidemiological genetics of infectious disease. 相似文献
11.
Erin J. Walker Parisa Younessi Alex J. Fulcher Robert McCuaig Belinda J. Thomas Philip G. Bardin David A. Jans Reena Ghildyal 《PloS one》2013,8(8)
Human Rhinovirus (HRV) infection results in shut down of essential cellular processes, in part through disruption of nucleocytoplasmic transport by cleavage of the nucleoporin proteins (Nups) that make up the host cell nuclear pore. Although the HRV genome encodes two proteases (2A and 3C) able to cleave host proteins such as Nup62, little is known regarding the specific contribution of each. Here we use transfected as well as HRV-infected cells to establish for the first time that 3C protease is most likely the mediator of cleavage of Nup153 during HRV infection, while Nup62 and Nup98 are likely to be targets of HRV2A protease. HRV16 3C protease was also able to elicit changes in the appearance and distribution of the nuclear speckle protein SC35 in transfected cells, implicating it as a key mediator of the mislocalisation of SC35 in HRV16-infected cells. In addition, 3C protease activity led to the redistribution of the nucleolin protein out of the nucleolus, but did not affect nuclear localisation of hnRNP proteins, implying that complete disruption of nucleocytoplasmic transport leading to relocalisation of hnRNP proteins from the nucleus to the cytoplasm in HRV-infected cells almost certainly requires 2A in addition to 3C protease. Thus, a specific role for HRV 3C protease in cleavage and mislocalisation of host cell nuclear proteins, in concert with 2A, is implicated for the first time in HRV pathogenesis. 相似文献
12.
Lori R. Shapiro Lucie Salvaudon Kerry E. Mauck Hannier Pulido Consuelo M. De Moraes Andrew G. Stephenson Mark C. Mescher 《PloS one》2013,8(10)
Both biotic and abiotic stressors can elicit broad-spectrum plant resistance against subsequent pathogen challenges. However, we currently have little understanding of how such effects influence broader aspects of disease ecology and epidemiology in natural environments where plants interact with multiple antagonists simultaneously. In previous work, we have shown that healthy wild gourd plants (Cucurbita pepo ssp. texana) contract a fatal bacterial wilt infection (caused by Erwinia tracheiphila) at significantly higher rates than plants infected with Zucchini yellow mosaic virus (ZYMV). We recently reported evidence that this pattern is explained, at least in part, by reduced visitation of ZYMV-infected plants by the cucumber beetle vectors of E. tracheiphila. Here we examine whether ZYMV-infection may also directly elicit plant resistance to subsequent E. tracheiphila infection. In laboratory studies, we assayed the induction of key phytohormones (SA and JA) in single and mixed infections of these pathogens, as well as in response to the feeding of A. vittatum cucumber beetles on healthy and infected plants. We also tracked the incidence and progression of wilt disease symptoms in plants with prior ZYMV infections. Our results indicate that ZYMV-infection slightly delays the progression of wilt symptoms, but does not significantly reduce E. tracheiphila infection success. This observation supports the hypothesis that reduced rates of wilt disease in ZYMV-infected plants reflect reduced visitation by beetle vectors. We also documented consistently strong SA responses to ZYMV infection, but limited responses to E. tracheiphila in the absence of ZYMV, suggesting that the latter pathogen may effectively evade or suppress plant defenses, although we observed no evidence of antagonistic cross-talk between SA and JA signaling pathways. We did, however, document effects of E. tracheiphila on induced responses to herbivory that may influence host-plant quality for (and hence pathogen acquisition by) cucumber beetles. 相似文献
13.
Xiangfang Zeng Lakshmi T. Sunkara Weiyu Jiang Megan Bible Scott Carter Xi Ma Shiyan Qiao Guolong Zhang 《PloS one》2013,8(8)
Dietary modulation of the synthesis of endogenous host defense peptides (HDPs) represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections. However, HDP regulation by dietary compounds such as butyrate is species-dependent. To examine whether butyrate could induce HDP expression in pigs, we evaluated the expressions of a panel of porcine HDPs in IPEC-J2 intestinal epithelial cells, 3D4/31 macrophages, and primary monocytes in response to sodium butyrate treatment by real-time PCR. We revealed that butyrate is a potent inducer of multiple, but not all, HDP genes. Porcine β-defensin 2 (pBD2), pBD3, epididymis protein 2 splicing variant C (pEP2C), and protegrins were induced markedly in response to butyrate, whereas pBD1 expression remained largely unaltered in any cell type. Additionally, a comparison of the HDP-inducing efficacy among saturated free fatty acids of different aliphatic chain lengths revealed that fatty acids containing 3–8 carbons showed an obvious induction of HDP expression in IPEC-J2 cells, with butyrate being the most potent and long-chain fatty acids having only a marginal effect. We further investigated a panel of butyrate analogs for their efficacy in HDP induction, and found glyceryl tributyrate, benzyl butyrate, and 4-phenylbutyrate to be comparable with butyrate. Identification of butyrate and several analogs with a strong capacity to induce HDP gene expression in pigs provides attractive candidates for further evaluation of their potential as novel alternatives to antibiotics in augmenting innate immunity and disease resistance of pigs. 相似文献
14.
15.
XIANG GU YAN-HONG HUA YANG-DONG ZHANG DI BAO JIN LV HONG-FANG HU 《Polish journal of microbiology》2021,70(1):3
Aspergillus fumigatus is one of the ubiquitous fungi with airborne conidia, which accounts for most aspergillosis cases. In immunocompetent hosts, the inhaled conidia are rapidly eliminated. However, immunocompromised or immunodeficient hosts are particularly vulnerable to most Aspergillus infections and invasive aspergillosis (IA), with mortality from 50% to 95%. Despite the improvement of antifungal drugs over the last few decades, the therapeutic effect for IA patients is still limited and does not provide significant survival benefits. The drawbacks of antifungal drugs such as side effects, antifungal drug resistance, and the high cost of antifungal drugs highlight the importance of finding novel therapeutic and preventive approaches to fight against IA. In this article, we systemically addressed the pathogenic mechanisms, defense mechanisms against A. fumigatus, the immune response, molecular aspects of host evasion, and vaccines’ current development against aspergillosis, particularly those based on AFMP4 protein, which might be a promising antigen for the development of anti-A. fumigatus vaccines. 相似文献
16.
Effects of Antigen and Genetic Adjuvants on Immune Responses to Human Immunodeficiency Virus DNA Vaccines in Mice 总被引:22,自引:0,他引:22 下载免费PDF全文
Anne C. Moore Wing-pui Kong Bimal K. Chakrabarti Gary J. Nabel 《Journal of virology》2002,76(1):243-250
The effects of genetic adjuvants on humoral and cell-mediated immunity to two human immunodeficiency virus antigens, Env and Nef, have been examined in mice. Despite similar levels of gene expression and the same gene delivery vector, the immune responses to these two gene products differed following DNA immunization. Intramuscular immunization with a Nef expression vector plasmid generated a humoral response and antigen-specific gamma interferon (IFN-gamma) production but little cytotoxic-T-lymphocyte (CTL) immunity. In contrast, immunization with an Env vector stimulated CTL activity but did not induce a high-titer antibody response. The ability to modify these antigen-specific immune responses was investigated by coinjection of DNA plasmids encoding cytokine and/or hematopoietic growth factors, interleukin-2 (IL-2), IL-12, IL-15, Flt3 ligand (FL), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Coadministration of these genes largely altered the immune responses quantitatively but not qualitatively. IL-12 induced the greatest increase in IFN-gamma and immunoglobulin G responses to Nef, and GM-CSF induced the strongest IFN-gamma and CTL responses to Env. A dual approach of expanding innate immunity by administering the FL gene, together with a cytokine that enhances adaptive immune responses, IL-2, IL-12, or IL-15, generated the most potent immune response at the lowest doses of Nef antigen. These findings suggest that intrinsic properties of the antigen determine the character of immune reactivity for this method of immunization and that specific combination of innate and adaptive immune cytokine genes can increase the magnitude of the response to DNA vaccines. 相似文献
17.
Divya T. George Carolyn A. Behm David H. Hall Ulrike Mathesius Melanie Rug Ken C. Q. Nguyen Naresh K. Verma 《PloS one》2014,9(9)
The Gram-negative bacterium Shigella flexneri is the causative agent of shigellosis, a diarrhoeal disease also known as bacillary dysentery. S. flexneri infects the colonic and rectal epithelia of its primate host and induces a cascade of inflammatory responses that culminates in the destruction of the host intestinal lining. Molecular characterization of host-pathogen interactions in this infection has been challenging due to the host specificity of S. flexneri strains, as it strictly infects humans and non-human primates. Recent studies have shown that S. flexneri infects the soil dwelling nematode Caenorhabditis elegans, however, the interactions between S. flexneri and C. elegans at the cellular level and the cause of nematode death are unknown. Here we attempt to gain insight into the complex host-pathogen interactions between S. flexneri and C. elegans. Using transmission electron microscopy, we show that live S. flexneri cells accumulate in the nematode intestinal lumen, produce outer membrane vesicles and invade nematode intestinal cells. Using two-dimensional differential in-gel electrophoresis we identified host proteins that are differentially expressed in response to S. flexneri infection. Four of the identified genes, aco-1, cct-2, daf-19 and hsp-60, were knocked down using RNAi and ACO-1, CCT-2 and DAF-19, which were identified as up-regulated in response to S. flexneri infection, were found to be involved in the infection process. aco-1 RNAi worms were more resistant to S. flexneri infection, suggesting S. flexneri-mediated disruption of host iron homeostasis. cct-2 and daf-19 RNAi worms were more susceptible to infection, suggesting that these genes are induced as a protective mechanism by C. elegans. These observations further our understanding of the processes involved in S. flexneri infection of C. elegans, which is immensely beneficial to the routine use of this new in vivo model to study S. flexneri pathogenesis. 相似文献
18.
Ulrich Arnold Angelika Schierhorn Renate Ulbrich-Hofmann 《Journal of Protein Chemistry》1998,17(5):397-405
The influence of glycosylation on proteolytic degradation was studied by comparing cleavage sites in ribonuclease A (RNase A) and ribonuclease B (RNase B), which only differ by a carbohydrate chain attached to Asn34 in RNase B. Primary cleavage sites in RNase B were determined by identifying complementary fragments using matrix-assisted laser desorption/ionization mass spectrometry and compared with those in RNase A [Arnold et al. (1996), Eur. J. Biochem.
237, 862–869]. RNase B was cleaved by subtilisin even at 25°C at Ala20–Ser21 as known for RNase A. Under thermal unfolding, the peptide bonds Asn34–Leu35 and Thr45–Phe46 were identified as primary cleavage sites for thermolysin and Lys31–Ser32 for trypsin. These sites are widely identical with those in RNase A. Treatment of reduced and carbamidomethylated RNase A and RNase B with trypsin led to a fast degradation and revealed new primary cleavage sites. Therefore, the state of unfolding seems to determine the sequence of degradation steps more than steric hindrance by the carbohydrate moiety does. 相似文献
19.
Linda Tomasinsig Monica Benincasa Marco Scocchi Barbara Skerlavaj Alessandro Tossi Margherita Zanetti Renato Gennaro 《Probiotics and antimicrobial proteins》2010,2(1):12-20
The in vitro antimicrobial activities and biological effects on host cells were compared for the bovine cathelicidins BMAP-28, an alpha-helical AMP, and Bac5 and Bac7, proline-rich AMPs. Our results confirm that the broad-spectrum activity of BMAP-28 correlates with a high capacity to interact with and permeabilize bacterial membranes, whereas the proline-rich AMPs selectively internalize into the cytoplasm of susceptible Gram-negative bacteria with a non-lytic mechanism. All peptides efficiently translocated into mammalian fibroblastic cells, but while Bac5 and Bac7(1–35) localized to nuclear structures and induced cellular proliferation, BMAP-28 associated with mitochondria and did not induce proliferation. Moreover, BMAP-28 was considerably more cytotoxic than the proline-rich peptides due to cytolytic and pro-apoptotic effects. Our results highlight important functional differences among the bovine cathelicidins and suggest that they contribute to an integrated response of the host to infection, with distinct but complementary activities. 相似文献
20.
用SOS测试方法筛选了60种中药对大肠杆菌SOS反应的抑制作用。结果表明,11种中药可以抑制原噬菌体的诱导释放。其中黄精、党参和枸杞子的抑制作用较强。用SOS显色法进一步证实了这3种中药对SOS反应的抑制作用。这3种中药同时还可抑制羟基脲诱发的酵母细胞的基因转变。经Sephadex G-25分离,薄层层析鉴定,黄精抑制SOS反应的有效成分为分子量不大于3000道尔顿的还原糖。此成分可抑制GW1060(recA441)细胞42℃诱发的SOS反应,而对GW1107(lex A51)细胞SOS网络的基因表达没有影响,从而推断它是recA蛋白酶的抑制剂。 相似文献