共查询到20条相似文献,搜索用时 15 毫秒
1.
Yongqing Wang John Sun Bashar Kahaleh 《Journal of cellular and molecular medicine》2021,25(14):7078-7088
Impaired angiogenesis in scleroderma (SSc) is a critical component of SSc pathology. MicroRNA-126 (miR-126) is expressed in endothelial cells (MVECs) where it regulates VEGF responses by repressing the negative regulators of VEGF, including the sprouty-related protein-1 (SPRED1), and phosphoinositide-3 kinase regulatory subunit 2 (PIK3R2). MVECs were isolated from SSc skin and matched subjects (n = 6). MiR-126 expression was measured by qPCR and in situ hybridization. Matrigel-based tube assembly was used to test angiogenesis. MiR-126 expression was inhibited by hsa-miR-126 inhibitor and enhanced by hsa-miR-126 Mimic. Epigenetic regulation of miR-126 expression was examined by the addition of epigenetic inhibitors (Aza and TSA) to MVECs and by bisulphite genomic sequencing of DNA methylation of the miR-126 promoter region. MiR-126 expression, as well as EGFL7 (miR-126 host gene), in SSc-MVECs and skin, was significantly down-regulated in association with increased expression of SPRED1 and PIK3R2 and diminished response to VEGF. Inhibition of miR-126 in NL-MVECs resulted in reduced angiogenic capacity, whereas overexpression of miR-126 in SSc-MVECs resulted in enhanced tube assembly. Addition of Aza and TSA normalized miR-126 and EGFL7 expression levels in SSc-MVECs. Heavy methylation in miR-126/EGFL7 gene was noted. In conclusion, these results demonstrate that the down-regulation of miR-126 results in impaired VEGF responses. 相似文献
2.
Transforming growth factor beta (TGF-beta) signals through two distinct pathways to regulate endothelial cell proliferation, migration, and angiogenesis, the ALK-1/Smad 1/5/8 and ALK-5/Smad2/3 pathways. Endoglin is a co-receptor predominantly expressed in endothelial cells that participates in TGFbeta-mediated signaling with ALK-1 and ALK-5 and regulates critical aspects of cellular and biological responses. The embryonic lethal phenotype of knock-out mice because of defects in angiogenesis and disease-causing mutations resulting in human vascular diseases both support essential roles for endoglin, ALK-1, and ALK-5 in the vasculature. However, the mechanism by which endoglin mediates TGF-beta signaling through ALK-1 and ALK-5 has remained elusive. Here we describe a novel interaction between endoglin and GIPC, a scaffolding protein known to regulate cell surface receptor expression and trafficking. Co-immunoprecipitation and immunofluorescence confocal studies both demonstrate a specific interaction between endoglin and GIPC in endothelial cells, mediated by a class I PDZ binding motif in the cytoplasmic domain of endoglin. Subcellular distribution studies demonstrate that endoglin recruits GIPC to the plasma membrane and co-localizes with GIPC in a TGFbeta-independent manner, with GIPC-promoting cell surface retention of endoglin. Endoglin specifically enhanced TGF-beta1-induced phosphorylation of Smad 1/5/8, increased a Smad 1/5/8 responsive promoter, and inhibited endothelial cell migration in a manner dependent on the ability of endoglin to interact with GIPC. These studies define a novel mechanism for the regulation of endoglin signaling and function in endothelial cells and demonstrate a new role for GIPC in TGF-beta signaling. 相似文献
3.
Koike T Izumikawa T Tamura J Kitagawa H 《Biochemical and biophysical research communications》2012,420(3):523-529
Bone formation in the vertebrate skeleton occurs via the processes of endochondral and membranous ossification. Bone matrices contain chondroitin sulfate (CS) chains that regulate endochondral ossification. However, the function of CS in membranous ossification is unclear. Here, using preosteoblastic MC3T3-E1 cells we demonstrate that chondroitin sulfate-E (CS-E) promotes osteoblast differentiation by binding to both N-cadherin and cadherin-11. Differentiated MC3T3-E1 cells exhibited an increase in the total amount of CS and of E-disaccharide units of CS over time. In addition, CS-E polysaccharide, but not CS-A polysaccharide, bound to N-cadherin and cadherin-11 and enhanced osteoblast differentiation. In contrast, osteoblast differentiation was inhibited in chondroitinase ABC-digested MC3T3-E1 cells. Notably, CS-E polysaccharide and hexasaccharide activated intracellular signaling during osteoblast differentiation in non-contacting MC3T3-E1 cells, decreased ERK1/2 phosphorylation, and activated Smad3 and Smad1/5/8; these reactions were blocked by neutralizing antibodies against N-cadherin or cadherin-11, even though cell-cell adhesion is reported to be required for initiation of MC3T3-E1 cell differentiation. Furthermore, CS-E-unit overexpression in MC3T3-E1 cells increased adhesion of the cells to N-cadherin and cadherin-11, and promoted osteoblast differentiation. Collectively, these results suggest that CS-E is a selective ligand for the potential CS receptors, N-cadherin and cadherin-11, leading to osteoblast differentiation of MC3T3-E1 cells. 相似文献
4.
All-trans retinoic acid inhibited chondrogenesis of mouse embryonic palate mesenchymal cells by down-regulation of TGF-beta/Smad signaling 总被引:12,自引:0,他引:12
Chondrogenesis is a critical step in palatogenesis. All-trans retinoic acid (atRA), a vitamin A derivative, is a known teratogenic effector of cleft palate. Here, we evaluated the effects of atRA on the osteo-/chondrogenic differentiation of mouse embryonic palate mesenchymal (MEPM) cells. MEPM cells, in a high-density micromass environment, undergo active chondrogenesis in a manner analogous to that of limb-derived mesenchymal cells, and served as a valid model system to investigate the mechanisms regulating chondrogenesis during palatogenesis. atRA-treated MEPM micromass expressed relatively higher levels of osteoblastic gene markers (alkaline phosphatase and collagen type I) and lower levels of chondrocytic gene markers (collagen type II and aggrecan). As transforming growth factor-beta3 (TGF-beta3) is an essential growth factor for chondrogenesis of embryonic mesenchymal cells both in in vivo and in vitro conditions, we thereby explored the effects of atRA on TGF-beta3 signaling pathway. atRA led to an increase in mRNA expression of TGF-beta3 and an instantaneous decrease in TGF-beta type II receptor (TbetaRII) as determined by real-time RT-PCR. Further study showed that atRA inhibited phosphorylation of Smad2 and Smad3 and increased Smad7 expression. Activation of the Smad pathways by transfection with Smad7deltaC mutant or constitutively active TbetaRII retroviral vector abolished atRA-induced inhibition of chondrogenesis as indicated by Alcian blue staining, indicating that Smad signaling is essential for this response. Taken together, these data for the first time demonstrated a role for RA-induced hypochondrogenesis through regulation of the TGF-beta3 pathway and suggested a role for TbetaRII /Smad in retinoid-induced cleft palate. 相似文献
5.
6.
7.
Tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 (TIE2), the receptor for angiopoietins, has been found highly expressed in cervical cancer and associated with poor prognosis. However, the potential role of tumoral TIE2 in cervical cancer angiogenesis and the underlying mechanisms remain unexplored. Here, based on multicolor immunofluorescence of 64 cervical cancer tissues, we found that TIE2 level in cervical cancer cells was positively related to shorter survival and higher microvessel density in tumor. In vitro and in vivo experiments verified that TIE2-high cervical cancer cells could promote tumor angiogenesis. TIE2-high tumor cells induced an amplified expression of TIE2 and vascular endothelial growth factor receptor 2(VEGFR2) in HUVECs to promote angiogenesis via TIE2 -AKT/MAPK signals, which could be reversed or partially reversed by TIE2, AKT or MAPK inhibitors and activated by angiopoietin-1 and angiopoietin-2. In conclusion, TIE2-high cervical cancer cells promote tumor angiogenesis by upregulating TIE2 and VEGFR2 in endothelial cells via TIE2-AKT/MAPK axis inside tumor cells. 相似文献
8.
Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells 总被引:10,自引:0,他引:10
Gonzalez E Nagiel A Lin AJ Golan DE Michel T 《The Journal of biological chemistry》2004,279(39):40659-40669
Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules in endothelial cells. To explore the role of this protein in receptor-modulated signaling pathways, we transfected bovine aortic endothelial cells (BAEC) with small interfering RNA (siRNA) duplexes to down-regulate caveolin-1 expression. Transfection of BAEC with duplex siRNA targeted against caveolin-1 mRNA selectively "knocked-down" the expression of caveolin-1 by approximately 90%, as demonstrated by immunoblot analyses of BAEC lysates. We used discontinuous sucrose gradients to purify caveolin-containing lipid rafts from siRNA-treated endothelial cells. Despite the near-total down-regulation of caveolin-1 expression, the lipid raft targeting of diverse signaling proteins (including the endothelial isoform of nitric-oxide synthase, Src-family tyrosine kinases, Galphaq and the insulin receptor) was unchanged. We explored the consequences of caveolin-1 knockdown on kinase pathways modulated by the agonists sphingosine-1 phosphate (S1P) and vascular endothelial growth factor (VEGF). siRNA-mediated caveolin-1 knockdown enhanced basal as well as S1P- and VEGF-induced phosphorylation of the protein kinase Akt and did not modify the basal or agonist-induced phosphorylation of extracellular signal-regulated kinases 1/2. Caveolin-1 knock-down also significantly enhanced the basal and agonist-induced activity of the small GTPase Rac. We used siRNA to down-regulate Rac expression in BAEC, and we observed that Rac knockdown significantly reduced basal, S1P-, and VEGF-induced Akt phosphorylation, suggesting a role for Rac activation in the caveolin siRNA-mediated increase in Akt phosphorylation. By using siRNA to knockdown caveolin-1 and Rac expression in cultured endothelial cells, we have found that caveolin-1 does not seem to be required for the targeting of signaling molecules to caveolae/lipid rafts and that caveolin-1 differentially modulates specific kinase pathways in endothelial cells. 相似文献
9.
Gálvez BG Genís L Matías-Román S Oblander SA Tryggvason K Apte SS Arroyo AG 《The Journal of biological chemistry》2005,280(2):1292-1298
We have investigated the putative role and regulation of membrane type 1-matrix metalloproteinase (MT1-MMP) in angiogenesis induced by inflammatory factors of the chemokine family. The absence of MT1-MMP from null mice or derived mouse lung endothelial cells or the blockade of its activity with inhibitory antibodies resulted in the specific decrease of in vivo and in vitro angiogenesis induced by CCL2 but not CXCL12. Similarly, CCL2- and CXCL8-induced tube formation by human endothelial cells (ECs) was highly dependent on MT1-MMP activity. CCL2 and CXCL8 significantly increased MT1-MMP surface expression, clustering, activity, and function in human ECs. Investigation of the signaling pathways involved in chemokine-induced MT1-MMP activity in ECs revealed that CCL2 and CXCL8 induced cortical actin polymerization and sustained activation of phosphatidylinositol 3-kinase (PI3K) and the small GTPase Rac. Inhibition of PI3K or actin polymerization impaired CCL2-induced MT1-MMP activity. Finally, dimerization of MT1-MMP was found to be enhanced by CCL2 in ECs in a PI3K- and actin polymerization-dependent manner. In summary, we identify MT1-MMP as a molecular target preferentially involved in angiogenesis mediated by CCL2 and CXCL8, but not CXCL12, and suggest that MT1-MMP dimerization might be an important mechanism of its regulation during angiogenesis. 相似文献
10.
11.
ObjectiveThe role of exosomes in human cancers has been identified, while the effect of cancer-associated fibroblasts (CAFs)-derived exosomes (CAF-exos) transmitting microRNAs (miRNAs) on colorectal cancer (CRC) remains largely unknown. We aim to explore the impact of CAF-derived exosomal miR-135b-5p on CRC progression by targeting thioredoxin-interacting protein (TXNIP).MethodsCRC tissues were collected to obtain CAF-exos, which were used to co-culture with LoVo and HT29 cells. The effect of miR-135b-5p and TXNIP on the in vivo growth, in vitro proliferation, apoptosis, migration, invasion and angiogenesis of CRC cells. miR-135b-5p and TXNIP expression in exosomes and CRC cells were detected and their targeting relationship was confirmed.ResultsMiR-135b-5p was upregulated whereas TXNIP was downregulated in CRC tissues and cells. The CAF-exos and CAF-exos upregulating miR-135b-5p promoted in vivo growth, in vitro proliferation, migration and invasion, and suppressed apoptosis of CRC cells, and also promoted the HUVEC angiogenesis. TXNIP was confirmed as a target of miR-135b-5p and overexpression of TXNIP could weaken the pro-CRC effect of exosomal miR-135b-5p,ConclusionCAF-exos upregulate miR-135b-5p to promote CRC cell growth and angiogenesis by inhibiting TXNIP. 相似文献
12.
Guo X Oshima H Kitmura T Taketo MM Oshima M 《The Journal of biological chemistry》2008,283(28):19864-19871
Myofibroblasts, also known as activated fibroblasts, constitute an important niche for tumor development through the promotion of angiogenesis. However, the mechanism of stromal fibroblast activation in tumor tissues has not been fully understood. A gastric cancer mouse model (Gan mice) was recently constructed by simultaneous activation of prostaglandin (PG) E2 and Wnt signaling in the gastric mucosa. Because both the PGE2 and Wnt pathways play a role in human gastric tumorigenesis, the Gan mouse model therefore recapitulates the molecular etiology of human gastric cancer. Microvessel density increased significantly in Gan mouse tumors. Moreover, the expression of vascular endothelial growth factor A (VEGFA) was predominantly induced in the stromal cells of gastric tumors. Immunohistochemistry suggested that VEGFA-expressing cells in the stroma were alpha-smooth muscle actin-positive myofibroblasts. Bone marrow transplantation experiments indicated that a subset of gastric myofibroblasts is derived from bone marrow. Importantly, the alpha-smooth muscle actin index in cultured fibroblasts increased significantly when stimulated with the conditioned medium of Gan mouse tumor cells, indicating that gastric tumor cells activate stromal fibroblasts. Furthermore, conditioned medium of Gan mouse tumor cells induced VEGFA expression both in embryonic and gastric fibroblasts, which further accelerated the tube formation of human umbilical vein endothelial cells in vitro. Notably, stimulation of fibroblasts with PGE2 and/or Wnt1 did not induce VEGFA expression, thus suggesting that factors secondarily induced by PGE2 and Wnt signaling in the tumor cells are responsible for activation of stromal fibroblasts. Such tumor cell-derived factors may therefore be an effective target for chemoprevention against gastric cancer. 相似文献
13.
14.
Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells 总被引:1,自引:0,他引:1
Background
Hypoxia-induced renal tubular cell epithelial–mesenchymal transition (EMT) is an important event leading to renal fibrosis. MicroRNAs (miRNAs) are small non-coding RNA molecules that bind to their mRNA targets, thereby leading to translational repression. The role of miRNA in hypoxia-induced EMT is largely unknown.Methodology/Principal Findings
miRNA profiling was performed for the identification of differentially expressed miRNAs in HK-2 cells under normal and low oxygen, and the results were then verified by quantitative real time RT-PCR (qRT-PCR). The function of miRNAs in hypoxia-induced renal tubular cell EMT was assessed by the transfection of specific miRNA inhibitors and mimics. Luciferase reporter gene assays and western blot analysis were performed to validate the target genes of miR-34a. siRNA against Jagged1 was designed to investigate the role of the miR-34a-Notch pathway in hypoxia induced renal tubular cell EMT. miRNA-34a was identified as being downregulated in hypoxic renal tubular epithelial cells. Inhibition of miR-34a expression in HK-2 cells, which highly express endogenous miR-34a, promoted a mesenchymal phenotype accompanied by reduced expression of the epithelial marker Z0-1, E-cadherin and increased expression of the mesenchymal markers α-SMA and vimentin. Conversely, miR-34a mimics effectively prevented hypoxia-induced EMT. Transfection of miRNA-34a in HK-2 cells under hypoxia abolished hypoxia-induced expression of Notch1 and Jagged1 as well as Notch downstream signals, such as snail. Western blot analysis and luciferase reporter gene assays showed direct evidence for miR-34a targeting Notch1 and Jagged1. siRNAs against Jagged1 or Notch1 effectively prevented miR-34a inhibitor-induced tubular epithelial cell EMT.Conclusions/Significance
Our study provides evidence that the hypoxia-induced decrease of miR-34a expression could promote EMT in renal tubular epithelial cells by directly targeting Notch1 and Jagged1, and subsequently, Notch downstream signaling. 相似文献15.
Qiang Li Yugang Ge Xiaofeng Chen Lu Wang Yiwen Xia Zhipeng Xu Zheng Li Weizhi Wang Li Yang Diancai Zhang Zekuan Xu 《Journal of cellular biochemistry》2019,120(9):15190-15201
Gastric cancer (GC) is one of the most common cancers worldwide and has especially high morbidity and mortality in China. LEM domain containing 1 (LEMD1), an important cancer-testis antigen, has been reported to be overexpressed in various cancers and promotes the progression of cancers. However, the biological characteristics of LEMD1 remain to be explored in GC. The connection between LEMD1 expression and GC progression was analyzed by using The Cancer Genome Atlas datasets and our human microarray datasets. A Kaplan-Meier plot was used to analyze the relationship between LEMD1 expression and prognosis. The expression of LEMD1 was analyzed by quantitative real-time polymerase chain reaction and Western blot, and the proliferation ability of GC cells was analyzed by cell proliferation and colony formation assays and 5-ethynyl-2′-deoxyuridine analysis. The cell cycle and apoptosis were analyzed by flow cytometry. Furthermore, subcutaneously implanted tumor models in nude mice were used to demonstrate the role of LEMD1 in promoting tumor proliferation in vivo. In this study, we demonstrated that the LEMD1 expression level was increased in GC tissues and cells compared with normal tissues and GES-1. The in vivo and in vitro assays showed that LEMD1 promoted GC cell proliferation by regulating the cell cycle and apoptosis. Moreover, we showed that LEMD1 regulated cell proliferation by activating the phosphatidylinositol 3 kinase (PI3K) / protein kinase B (AKT) signaling pathway. Overall, the results of our study suggest that LEMD1 contributes to GC proliferation by regulating the cell cycle and apoptosis via activation of the PI3K/AKT signaling pathway. LEMD1 may act as a potential target for GC treatment. 相似文献
16.
Beiping Zhong Bing Cheng Xiaoming Huang Qian Xiao Zhitong Niu Yu-feng Chen Qiang Yu Wenyu Wang Xiao-Jian Wu 《Cell death & disease》2022,13(1)
Cancer-associated fibroblasts (CAFs) have been shown to play a strong role in colorectal cancer metastasis, yet the underlying mechanism remains to be fully elucidated. Using CRC clinical samples together with ex vivo CAFs-CRC co-culture models, we found that CAFs induce expression of Leucine Rich Alpha-2-Glycoprotein 1(LRG1) in CRC, where it shows markedly higher expression in metastatic CRC tissues compared to primary tumors. We further show that CAFs-induced LRG1 promotes CRC migration and invasion that is concomitant with EMT (epithelial-mesenchymal transition) induction. In addition, this signaling axis has also been confirmed in the liver metastatic mouse model which displayed CAFs-induced LRG1 substantially accelerates metastasis. Mechanistically, we demonstrate that CAFs-secreted IL-6 (interleukin-6) is responsible for LRG1 up-regulation in CRC, which occurs through a direct transactivation by STAT3 following JAK2 activation. In clinical CRC tumor samples, LRG1 expression was positively correlated with CAFs-specific marker, α-SMA, and a higher LRG1 expression predicted poor clinical outcomes especially distant metastasis free survival, supporting the role of LRG1 in CRC progression. Collectively, this study provided a novel insight into CAFs-mediated metastasis in CRC and indicated that therapeutic targeting of CAFs-mediated IL-6-STAT3-LRG1 axis might be a potential strategy to mitigate metastasis in CRC.Subject terms: Colon cancer, Cancer microenvironment 相似文献
17.
Shiyu Zheng Lishuang Wang Hongyan Ma Feng Sun Fuxing Wen 《Cell biology international》2021,45(8):1743-1756
Extracellular vesicles (EVs) have the potency to function as modulators in the process of myocardial ischemia/reperfusion (I/R) injury. This investigation was performed to decipher the mechanism of human umbilical vascular endothelial cells (HUVECs)-derived EVs in myocardial I/R injury with the involvement of microRNA-129 (miR-129). HUVECs-secreted EVs were collected and identified. An I/R mouse model was developed, and cardiomyocytes were used for vitro oxygen-glucose deprivation/reperfusion model establishment. Differentially expressed miRNAs in myocardial tissues after EV treatment were assessed using microarray analysis. The target relationship between miR-129 and toll-like receptor 4 (TLR4) was identified using a dual-luciferase assay. Gain- and loss-function studies regarding miR-129 were implemented to figure out its roles in myocardial I/R injury. Meanwhile, the activation of the nuclear factor-kappa-binding (NF-κB) p65 signaling and NOD-like receptor 3 (NLRP3) inflammasome was evaluated. EVs diminished the apoptosis of cardiomyocytes and the secretion of inflammatory factors, and all these trends were reversed by miR-129 reduction. miR-129 bound to the 3′-untranslated region of TLR4 directly. The NF-κB p65 signaling and NLRP3 inflammasome were abnormally activated after I/R injury, whose impairment after EVs was partially restored by miR-129 downregulation. This study illustrated that EVs could carry miR-129 to mitigate myocardial I/R injury via downregulating TLR4 and disrupting the NF-κB signaling and NLRP3 inflammasome. 相似文献
18.
Molecular and Cellular Biochemistry - BMP10 plays an essential role in regulating cardiac growth, chamber maturation, and maintaining normal expressions of several key cardiogenic factors; however,... 相似文献
19.
Chung BH Kim JD Kim CK Kim JH Kim JH Won MH Lee HS Dong MS Ha KS Kwon YG Kim YM 《Biochemical and biophysical research communications》2008,376(2):404-408
We investigated the molecular effect and signal pathway of icariin, a major flavonoid of Epimedium koreanum Nakai, on angiogenesis. Icariin stimulated in vitro endothelial cell proliferation, migration, and tubulogenesis, which are typical phenomena of angiogenesis, as well as increased in vivo angiogenesis. Icariin activated the angiogenic signal modulators, ERK, phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric oxide synthase (eNOS), and increased NO production, without affecting VEGF expression, indicating that icariin may directly stimulate angiogenesis. Icariin-induced ERK activation and angiogenic events were significantly inhibited by the MEK inhibitor PD98059, without affecting Akt and eNOS phosphorylation. The PI3K inhibitor Wortmannin suppressed icariin-mediated angiogenesis and Akt and eNOS activation without affecting ERK phosphorylation. Moreover, the NOS inhibitor NMA partially reduced the angiogenic activity of icariin. These results suggest that icariin stimulated angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy. 相似文献
20.
Bone morphogenetic proteins (BMPs) are secreted signals that regulate apical ectodermal ridge (AER) functions and interdigital programmed cell death (PCD) of developing limb. However the identities of the intracellular mediators of these signals are unknown. To investigate the role of Smad proteins in BMP-regulated AER functions in limb development, we inactivated Smad1 and Smad5 selectively in AER and ventral ectoderm of developing limb, using Smad1 or/and Smad5 floxed alleles and an En1(Cre/+) knock-in allele. Single inactivation of either Smad1 or Smad5 did not result in limb abnormalities. However, the Smad1/Smad5 double mutants exhibited syndactyly due to a reduction in interdigital PCD and an increase in interdigital cell proliferation. Cell tracing experiments in the Smad1/Smad5 double mutants showed that ventral ectoderm became thicker and the descendents of ventral En1(Cre/+) expressing ectodermal cells were located at dorsal interdigital regions. At the molecular level, Fgf8 expression was prolonged in the interdigital ectoderm of embryonic day (E) 13 Smad1/Smad5 double mutants, suggesting that the ectopic Fgf8 expression may serve as a survival signal for interdigital epithelial and mesenchymal cells. Our result suggests that Smad1 and Smad5 are required and function redundantly as intracellular mediators for BMP signaling in the AER and ventral ectoderm. Smad1/Smad5 signaling in the AER and ventral ectoderm regulates interdigital tissue regression of developing limb. Our mutants with defects in interdigital PCD could also serve as a valuable model for investigation of PCD regulation machinery. 相似文献