首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract processes in texture discrimination.   总被引:1,自引:0,他引:1  
J M du Buf 《Spatial Vision》1992,6(3):221-242
In this study some experiments on texture segmentation are reported using the local Gabor power spectrum. The techniques applied are: (1) supervised pixel classification; (2) boundary detection by spectral dissimilarity estimation; (3) region-based segmentation based on Gaussian spectral estimation; and (4) the same as (3) but based on central moments of the local spectrum. It is shown that very-acceptable-to-excellent results can be obtained. It is argued, however, that the shortcomings of region-based and boundary-based approaches require that both processes should act in parallel, not only in digital image processing but also in the modelling of visual perception.  相似文献   

2.
In this paper, a novel watershed approach based on seed region growing and image entropy is presented which could improve the medical image segmentation. The proposed algorithm enables the prior information of seed region growing and image entropy in its calculation. The algorithm starts by partitioning the image into several levels of intensity using watershed multi-degree immersion process. The levels of intensity are the input to a computationally efficient seed region segmentation process which produces the initial partitioning of the image regions. These regions are fed to entropy procedure to carry out a suitable merging which produces the final segmentation. The latter process uses a region-based similarity representation of the image regions to decide whether regions can be merged. The region is isolated from the level and the residual pixels are uploaded to the next level and so on, we recall this process as multi-level process and the watershed is called multi-level watershed. The proposed algorithm is applied to challenging applications: grey matter–white matter segmentation in magnetic resonance images (MRIs). The established methods and the proposed approach are experimented by these applications to a variety of simulating immersion, multi-degree, multi-level seed region growing and multi-level seed region growing with entropy. It is shown that the proposed method achieves more accurate results for medical image oversegmentation.  相似文献   

3.
Image segmentation is an important early stage in visual processing in which the visual system groups together parts of the image that belong together, prior to or in conjunction with object recognition. Two principal processes may be involved in image segmentation: an edge-based process that uses feature contrasts to mark boundaries of coherent regions, and a region-based process that groups similar features over a larger scale. Earlier, we have shown that motion and colour interact strongly in image segmentation by the human visual system. Here we explore the nature of this interaction in terms of edge- and region-based processes. We measure performance on a region-based colour segmentation task in the presence of distinct types of motion information, in the form of edges and regions which in themselves do not reveal the location of the colour target. The results show that both motion edges and regions may guide the integrative process required for this colour segmentation task. Motion edges appear to act by delimiting areas over which to integrate colour information, whereas motion similarities define primitive surfaces within which colour grouping and segmentation processes are deployed.  相似文献   

4.
Image segmentation of medical images is a challenging problem with several still not totally solved issues, such as noise interference and image artifacts. Region-based and histogram-based segmentation methods have been widely used in image segmentation. Problems arise when we use these methods, such as the selection of a suitable threshold value for the histogram-based method and the over-segmentation followed by the time-consuming merge processing in the region-based algorithm. To provide an efficient approach that not only produce better results, but also maintain low computational complexity, a new region dividing based technique is developed for image segmentation, which combines the advantages of both regions-based and histogram-based methods. The proposed method is applied to the challenging applications: Gray matter (GM), White matter (WM) and cerebro-spinal fluid (CSF) segmentation in brain MR Images. The method is evaluated on both simulated and real data, and compared with other segmentation techniques. The obtained results have demonstrated its improved performance and robustness.  相似文献   

5.
In recent years, the segmentation, i.e. the identification, of ear structures in video-otoscopy, computerised tomography (CT) and magnetic resonance (MR) image data, has gained significant importance in the medical imaging area, particularly those in CT and MR imaging. Segmentation is the fundamental step of any automated technique for supporting the medical diagnosis and, in particular, in biomechanics studies, for building realistic geometric models of ear structures. In this paper, a review of the algorithms used in ear segmentation is presented. The review includes an introduction to the usually biomechanical modelling approaches and also to the common imaging modalities. Afterwards, several segmentation algorithms for ear image data are described, and their specificities and difficulties as well as their advantages and disadvantages are identified and analysed using experimental examples. Finally, the conclusions are presented as well as a discussion about possible trends for future research concerning the ear segmentation.  相似文献   

6.
Active contour models are of great importance for image segmentation and can extract smooth and closed boundary contours of the desired objects with promising results. However, they cannot work well in the presence of intensity inhomogeneity. Hence, a novel region-based active contour model is proposed by taking image intensities and ‘vesselness values’ from local phase-based vesselness enhancement into account simultaneously to define a novel multi-feature Gaussian distribution fitting energy in this paper. This energy is then incorporated into a level set formulation with a regularization term for accurate segmentations. Experimental results based on publicly available STructured Analysis of the Retina (STARE) demonstrate our model is more accurate than some existing typical methods and can successfully segment most small vessels with varying width.  相似文献   

7.
Diagnostic surgical pathology or tissue–based diagnosis still remains the most reliable and specific diagnostic medical procedure. The development of whole slide scanners permits the creation of virtual slides and to work on so-called virtual microscopes. In addition to interactive work on virtual slides approaches have been reported that introduce automated virtual microscopy, which is composed of several tools focusing on quite different tasks. These include evaluation of image quality and image standardization, analysis of potential useful thresholds for object detection and identification (segmentation), dynamic segmentation procedures, adjustable magnification to optimize feature extraction, and texture analysis including image transformation and evaluation of elementary primitives. Grid technology seems to possess all features to efficiently target and control the specific tasks of image information and detection in order to obtain a detailed and accurate diagnosis. Grid technology is based upon so-called nodes that are linked together and share certain communication rules in using open standards. Their number and functionality can vary according to the needs of a specific user at a given point in time. When implementing automated virtual microscopy with Grid technology, all of the five different Grid functions have to be taken into account, namely 1) computation services, 2) data services, 3) application services, 4) information services, and 5) knowledge services. Although all mandatory tools of automated virtual microscopy can be implemented in a closed or standardized open system, Grid technology offers a new dimension to acquire, detect, classify, and distribute medical image information, and to assure quality in tissue–based diagnosis.  相似文献   

8.
Some papers of this special issue concern recent results on mathematical models of segmentation. As they are rather technical we propose here a pedagogical introduction for the non-mathematical reader. We briefly present the variational model of image segmentation proposed by David Mumford and we summarize some fundamental results of De Giorgi's school.  相似文献   

9.
Background: Analyzing MR scans of low-grade glioma, with highly accurate segmentation will have an enormous potential in neurosurgery for diagnosis and therapy planning. Low-grade gliomas are mainly distinguished by their infiltrating character and irregular contours, which make the analysis, and therefore the segmentation task, more difficult. Moreover, MRI images show some constraints such as intensity variation and the presence of noise.Methods: To tackle these issues, a novel segmentation method built from the local properties of image is presented in this paper. Phase-based edge detection is estimated locally by the monogenic signal using quadrature filters. This way of detecting edges is, from a theoretical point of view, intensity invariant and responds well to the MR images. To strengthen the tumor detection process, a region-based term is designated locally in order to achieve a local maximum likelihood segmentation of the region of interest. A Gaussian probability distribution is considered to model local images intensities.Results: The proposed model is evaluated using a set of real subjects and synthetic images derived from the Brain Tumor Segmentation challenge –BraTS 2015. In addition, the obtained results are compared to the manual segmentation performed by two experts. Quantitative evaluations are performed using the proposed approach with regard to four related existing methods.Conclusion: The comparison of the proposed method, shows more accurate results than the four existing methods.  相似文献   

10.
In this paper we propose a general variational segmentation model for multiphase texture segmentation based on fuzzy region competition principle. An important strength of the proposed framework is that different region terms (e.g. mutual information Kim et al. (2005) [1], local histogram Ni et al. (2009) [2] models for texture-based segmentation, and piecewise constant intensity model Chan and Vese (2001) [3] for intensity-based segmentation) can be included as appropriate to the problem. Constraints of different phases are considered by introducing Lagrangian multipliers into the energy functional, and a fast numerical solution is achieved by employing the fast dual projection algorithm Chambolle (2004) [4]. The proposed model has been applied to synthetic and natural images in order to make comparisons with other competing models in literature. Our results demonstrate superiority in dealing with multiphase texture segmentation problems. To demonstrate its usefulness in biomedical applications we have applied the new model to two retinal image segmentation problems: segmentation of capillary non-perfusion regions in fluorescein angiogram and segmentation of cellular layers of the retina in optical coherence tomography, and evaluated against the gold standard set by experts. The generalized overlap analysis shows good agreement for both applications. As a generic segmentation technique our new model has the potential to be extended for wider applications.  相似文献   

11.
The application of automated interpretation to medical images is discussed and the main methods of medical imaging are briefly described. The factors behind the process of human clinical interpretation are also considered. Because human interpretation can be aided by processing of the raw image, the standard methods of image processing are mentioned. Automated interpretation of images in other fields is relevant, and segmentation of images is an important initial part of the process. There are already some applications of automated interpretation of medical images. Some are more complete than others. This will undoubtedly be an important developing field of work which will draw on experience from other areas, and be spurred on by the increasing complexity of medical imaging methods and shortage of expertise for human interpretation.  相似文献   

12.
《IRBM》2014,35(1):27-32
Automatic anatomical brain image segmentation is still a challenge. In particular, algorithms have to address the partial volume effect (PVE) as well as the variability of the gray level of internal brain structures which may appear closer to gray matter (GM) than white matter (WM). Atlas based segmentation is one solution as it brings prior information. For such tasks, probabilistic atlases are very useful as they take account of the PVE information. In this paper, we provide a detailed analysis of a generative statistical model based on dense deformable templates that represents several tissue types observed in medical images. The inputs are gray level data whereas our atlas is composed of both an estimation of the deformation metric and probability maps of each tissue (called class). This atlas is used to guide the tissue segmentation of new images. Experiments are shown on brain T1 MRI datasets. This method only requires approximate pre-registration, as the latter is done jointly with the segmentation. Note however that an approximate registration is a reasonable pre-requisite given the application.  相似文献   

13.

The work reports the combination of basic digital image processing (DIP) techniques and statistical segmentation strategy (SDS) to improve surface plasmon resonance curve (SPRc) and SPR imaging (SPRi) sensors' performance. The SPR image is used for sensing and monitoring biological events in the so-called SPR imaging process. In the traditional SPR process based on the attenuated total reflection (ATR) method, the image is used to create the SPR curve, and the curve features tracking is employed on sensing applications. The SPR curve features are enhanced after the pixels of the SPR image have been processed with low-complexity filters in the spatial domain (brightness, contrast, threshold, and morphological). The bootstrap was used as a statistical processing approach, selecting lines and columns from the image that was less affected by imperfections and noises in the image detector, and consequently reducing the SPR sensor instrumentation disturbances. Experimental tests with reversible binding water-mixture were performed, and both image and statistical processing were reported. The combination of DIP and SDS approaches improves the extraction of the curve features, increasing the performance in terms of resonance position sensitivity to 81%.

  相似文献   

14.
In the image segmentation process of positron emission tomography combined with computed tomography (PET/CT) imaging, previous works used information in CT only for segmenting the image without utilizing the information that can be provided by PET. This paper proposes to utilize the hot spot values in PET to guide the segmentation in CT, in automatic image segmentation using seeded region growing (SRG) technique. This automatic segmentation routine can be used as part of automatic diagnostic tools. In addition to the original initial seed selection using hot spot values in PET, this paper also introduces a new SRG growing criterion, the sliding windows. Fourteen images of patients having extrapulmonary tuberculosis have been examined using the above-mentioned method. To evaluate the performance of the modified SRG, three fidelity criteria are measured: percentage of under-segmentation area, percentage of over-segmentation area, and average time consumption. In terms of the under-segmentation percentage, SRG with average of the region growing criterion shows the least error percentage (51.85%). Meanwhile, SRG with local averaging and variance yielded the best results (2.67%) for the over-segmentation percentage. In terms of the time complexity, the modified SRG with local averaging and variance growing criterion shows the best performance with 5.273 s average execution time. The results indicate that the proposed methods yield fairly good performance in terms of the over- and under-segmentation area. The results also demonstrated that the hot spot values in PET can be used to guide the automatic segmentation in CT image.  相似文献   

15.
The ultimate goal of machine vision is image understanding-the ability not only to recover image structure but also to know what it represents. By definition, this involves the use of models which describe and label the expected structure of the world. Over the past decade, model-based vision has been applied successfully to images of man-made objects. It has proved much more difficult to develop model-based approaches to the interpretation of images of complex and variable structures such as faces or the internal organs of the human body (as visualized in medical images). In such cases it has been problematic even to recover image structure reliably, without a model to organize the often noisy and incomplete image evidence. The key problem is that of variability. To be useful, a model needs to be specific-that is, to be capable of representing only ''legal'' examples of the modelled object(s). It has proved difficult to achieve this whilst allowing for natural variability. Recent developments have overcome this problem; it has been shown that specific patterns of variability in shape and grey-level appearance can be captured by statistical models that can be used directly in image interpretation. The details of the approach are outlined and practical examples from medical image interpretation and face recognition are used to illustrate how previously intractable problems can now be tackled successfully. It is also interesting to ask whether these results provide any possible insights into natural vision; for example, we show that the apparent changes in shape which result from viewing three-dimensional objects from different viewpoints can be modelled quite well in two dimensions; this may lend some support to the ''characteristic views'' model of natural vision.  相似文献   

16.

Purpose

To overcome the severe intensity inhomogeneity and blurry boundaries in HIFU (High Intensity Focused Ultrasound) ultrasound images, an accurate and efficient multi-scale and shape constrained localized region-based active contour model (MSLCV), was developed to accurately and efficiently segment the target region in HIFU ultrasound images of uterine fibroids.

Methods

We incorporated a new shape constraint into the localized region-based active contour, which constrained the active contour to obtain the desired, accurate segmentation, avoiding boundary leakage and excessive contraction. Localized region-based active contour modeling is suitable for ultrasound images, but it still cannot acquire satisfactory segmentation for HIFU ultrasound images of uterine fibroids. We improved the localized region-based active contour model by incorporating a shape constraint into region-based level set framework to increase segmentation accuracy. Some improvement measures were proposed to overcome the sensitivity of initialization, and a multi-scale segmentation method was proposed to improve segmentation efficiency. We also designed an adaptive localizing radius size selection function to acquire better segmentation results.

Results

Experimental results demonstrated that the MSLCV model was significantly more accurate and efficient than conventional methods. The MSLCV model has been quantitatively validated via experiments, obtaining an average of 0.94 for the DSC (Dice similarity coefficient) and 25.16 for the MSSD (mean sum of square distance). Moreover, by using the multi-scale segmentation method, the MSLCV model’s average segmentation time was decreased to approximately 1/8 that of the localized region-based active contour model (the LCV model).

Conclusions

An accurate and efficient multi-scale and shape constrained localized region-based active contour model was designed for the semi-automatic segmentation of uterine fibroid ultrasound (UFUS) images in HIFU therapy. Compared with other methods, it provided more accurate and more efficient segmentation results that are very close to those obtained from manual segmentation by a specialist.  相似文献   

17.
18.
In a companion study [Layton AT. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. Am J Physiol Renal Physiol. (First published November 10, 2010). 10.1152/ajprenal.00203.2010] a region-based mathematical model was formulated for the urine concentrating mechanism in the renal medulla of the rat kidney. In the present study, we investigated model sensitivity to some of the fundamental structural assumptions. An unexpected finding is that the concentrating capability of this region-based model falls short of the capability of models that have radially homogeneous interstitial fluid at each level of only the inner medulla (IM) or of both the outer medulla and IM, but are otherwise analogous to the region-based model. Nonetheless, model results reveal the functional significance of several aspects of tubular segmentation and heterogeneity: 1) the exclusion of ascending thin limbs that reach into the deep IM from the collecting duct clusters in the upper IM promotes urea cycling within the IM; 2) the high urea permeability of the lower IM thin limb segments allows their tubular fluid urea content to equilibrate with the surrounding interstitium; 3) the aquaporin-1-null terminal descending limb segments prevent water entry and maintain the transepithelial NaCl concentration gradient; 4) a higher thick ascending limb Na(+) active transport rate in the inner stripe augments concentrating capability without a corresponding increase in energy expenditure for transport; 5) active Na(+) reabsorption from the collecting duct elevates its tubular fluid urea concentration. Model calculations predict that these aspects of tubular segmentation and heterogeneity promote effective urine concentrating functions.  相似文献   

19.
20.
《IRBM》2014,35(4):202-213
Speckle has been widely considered a noisy feature in ultrasound images, thus it is intended to be suppressed and eliminated. On the other hand, speckle can be studied as a signal modeled by various statistical distributions or by analyzing its intensity with spatial relations in image space that characterize its nature, and hence, the nature of the underlying tissue. This knowledge can then be used in order to classify the different speckle regions into anatomical structures. In fact, speckle characterization in echocardiography and other ultrasonic images is important for motion tracking, tissue characterization, image segmentation, registration, and other medical applications for diagnosis, therapy planning and decision making. In this paper, we review and discuss various speckle characterization methods, which are often applied to confirm the speckle nature of the elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号