首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work was focused on finding a relationship between reactive oxygen species (ROS) and lovastatin biosynthesis (secondary metabolism) in Aspergillus terreus. In addition, an effort was made to find differences in accumulation and control of ROS in submerged (SmF) and solid-state fermentation (SSF), which could help explain higher metabolite production in the latter. sod1 expression, ROS content, and redox balance kinetics were measured during SmF and SSF. Results showed that A. terreus sod1 gene (oxidative stress defence enzyme) was intensely expressed during rapid growth phase (trophophase) of lovastatin fermentations. This high expression decreased abruptly, just before the onset of production (idiophase). However, ROS measurements detected high concentrations only in idiophase, suggesting a link between ROS and lovastatin biosynthesis. Apparently sod1 down regulation promotes the rise of ROS during idiophase. This oxidative state in idiophase was further supported by a high redox balance observed in trophophase that changed to a low value in idiophase (around six-fold lower). The patterns of ROS accumulation, sod1 expression, and redox balance behaviour were similar in SmF and SSF. However, sod1 expression and ROS concentration (ten-fold), were higher in SmF. Our results indicate a link between ROS and lovastatin biosynthesis. Also, showed differences of physiology in SSF that yield lower but more steady ROS concentrations, which could be associated to higher lovastatin production.  相似文献   

2.
3.
4.
Because of the difficulty to exclude possible involvement of nuclear DNA mutations, it has been a controversial issue whether pathogenic mutations in mitochondrial DNA (mtDNA) and the resultant respiration defects are involved in tumor development. To address this issue, our previous study generated transmitochondrial mice (mito-mice-ND613997), which possess the nuclear and mtDNA backgrounds derived from C57BL/6J (B6) strain mice except that they carry B6 mtDNA with a G13997A mutation in the mt-Nd6 gene. Because aged mito-mice-ND613997 simultaneously showed overproduction of reactive oxygen species (ROS) in bone marrow cells and high frequency of lymphoma development, current study examined the effects of administrating a ROS scavenger on the frequency of lymphoma development. We used N-acetylcysteine (NAC) as a ROS scavenger, and showed that NAC administration prevented lymphoma development. Moreover, its administration induced longevity in mito-mice-ND613997. The gene expression profiles in bone marrow cells indicated the upregulation of the Fasl gene, which can be suppressed by NAC administration. Given that natural-killer (NK) cells mediate the apoptosis of various tumor cells via enhanced expression of genes encoding apoptotic ligands including Fasl gene, its overexpression would reflect the frequent lymphoma development in bone marrow cells. These observations suggest that continuous administration of an antioxidant would be an effective therapeutics to prevent lymphoma development enhanced by ROS overproduction.  相似文献   

5.
6.
7.
《Phytomedicine》2014,21(4):515-522
Ginsenoside F2 (F2) is a potential bioactive metabolite of major ginsenosides. The potential anti-cancer effect of F2 in gastric cancer cells has not been appraised. This study investigated the effects of F2 on the production of reactive oxygen species (ROS). We also investigated the in vitro and in vivo effects of F2 on the downstream signaling pathways leading to apoptosis in human gastric cancer cells. The in vitro data revealed that F2 induces ROS accumulation followed by a decrease in mitochondrial transmembrane potential (MTP), and the release of cytochrome c (cyto c), which induced the caspase-dependent apoptosis. Further assay indicated that modulation of ASK-1/JNK pathway contributes to apoptosis. In vivo, F2 exhibits the obvious anti-cancer effect compared with cisplatin with no obvious toxicity. Jointly, these results suggest that F2 induces apoptosis by causing an accumulation of ROS and activating the ASK-1/JNK signaling pathway. This provides further support for the use of F2 as a novel anticancer therapeutic candidate.  相似文献   

8.
9.
10.
11.
Seeds germination is strictly controlled by environment factor such as high temperature (HT) through altering the balance between gibberellin acid (GA) and abscisic acid (ABA). Gama-aminobutyric acid (GABA) is a small molecule with four-carbon amino acid, which plays a crucial role during plant physiological process associated with pollination, wounding or abiotic stress, but its role in seeds germination under HT remains elusive. In this study we found that HT induced the overaccumulation of ROS, mainly H2O2 and O2- , to suppress seeds germination, meanwhile, HT also activated the enzyme activity of GAD for the rapid accumulation of GABA, hinting the regulatory function of GABA in controlling seeds germination against HT stress. Applying GABA directly attenuated HT-induced ROS accumulation, upregulated GA biosynthesis and downregulated ABA biosynthesis, ultimately enhanced seeds germination. Consistently, genetic analysis using the gad1/2 mutant defective in GABA biosynthesis, or pop2-5 mutant with high endogenous GABA content supported the potential function of GABA in improving seeds germination tolerance to HT through scavenging ROS overaccumulation. Based on these data, we propose that GABA acts as a novel signal to enhance thermotolerance of seeds germination through alleviating the ROS damage to seeds viability.  相似文献   

12.
13.
14.
15.

Background

Selenoprotein W (SelW) was thought to play an antioxidant role in mammals. Because chicken SelW has no cysteine (Cys) at the residue 37 (Cys37) that is required for the presumed antioxidant function in mammals, this study was conducted to determine whether chicken SelW possessed the same function.

Methods

Small interfering RNAs (siRNAs) technology was applied to suppress the SelW expression in chicken embryonic myoblasts. Thereafter, these myoblasts were treated with different concentrations of H2O2 and assayed for cell viability, apoptosis rate, reactive oxygen species (ROS) status, and expression levels of apoptosis-related genes and proteins (Bax, Bcl-2, and caspase-3).

Results

Silencing of the myoblast SelW gene decreased their cell viability, and increased their apoptosis rate and susceptibility to H2O2. While the knockout down of SelW up-regulated Bax and caspase-3 and down-regulated Bcl-2, the induced oxidative injuries were alleviated by treatment with a ROS scavenger, N-acetyl-l-cysteine (NAC).

Conclusion

Chicken SelW protected embryonic myoblasts against cell apoptosis mediated by endogenous and exogenous H2O2.

General significance

Chicken SelW possesses antioxidant function similar to the mammalian homologues despite the lack of Cys37 in the peptide.  相似文献   

16.
Salvia miltiorrhiza is one of the most popular traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Tanshinones, a group of active compounds in S. miltiorrhiza, are derived from two biosynthetic pathways: the mevalonate (MVA) pathway in the cytosol and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway in the plastids. Water stress is well known to stimulate the accumulation of secondary metabolites in plants. Reactive oxygen species (ROS) serve as important secondary messengers in water stress-induced signal transduction pathways. In this study, the effects of polyethylene glycol (PEG) and abscisic acid (ABA) on tanshinone production in S. miltiorrhiza hairy roots were investigated and the roles of ROS in PEG- and ABA-induced tanshinone production were further elucidated. The results showed that contents and yields of four tanshinones in S. miltiorrhiza hairy roots were significantly enhanced by 2 % PEG and 200?μM ABA. Simultaneously, the mRNA levels and activities of two key enzymes (3-hydroxy-3-methylglutaryl coenzyme A reductase and 1-deoxy-D-xylulose 5-phosphate synthase) involved in tanshinone biosynthesis were upregulated. Both PEG and ABA were able to trigger the burst of H2O2 and O2 ?. The PEG- and ABA-induced increases of tanshinone production, gene expression, and enzyme activity were all dramatically suppressed by two ROS scavengers, catalase and superoxide dismutase. In addition, ROS treatments resulted in a significant increase in tanshinone production. These results demonstrated that the MVA and MEP pathways were activated by PEG and ABA to stimulate tanshinone biosynthesis, and the increase of tanshinone production was probably via ROS signaling.  相似文献   

17.
Leguminous plants have exclusive ability to form symbiotic relationship with soil bacteria of the genus Rhizobium. Symbiosis is a complex process that involves multiple molecular signaling activities, such as calcium fluxes, production of reactive oxygen species (ROS) and synthesis of nodulation genes. We analyzed the role of ROS in defense gene expression in Medicago truncatula during symbiosis and pathogenesis. Studies in Arabidopsis thaliana showed that the induction of pathogenesis-related (PR) genes during systemic acquired resistance (SAR) is regulated by NPR1 protein, which resides in the cytoplasm as an oligomer. After oxidative burst and return of reducing conditions, the NPR1 undergoes monomerization and becomes translocated to the nucleus, where it functions in PR genes induction. We show that ROS production is both stronger and longer during symbiotic interactions than during interactions with pathogenic, nonhost or common nonpathogenic soil bacteria. Moreover, root cells inoculated with Sinorhizobium meliloti accumulated ROS in the cytosol but not in vacuoles, as opposed to Pseudomonas putida inoculation or salt stress treatment. Furthermore, increased ROS accumulation by addition of H2O2 reduced the PR gene expression, while catalase had an opposite effect, establishing that the PR gene expression is opposite to the level of cytoplasmic ROS. In addition, we show that salicylic acid pretreatment significantly reduced ROS production in root cells during symbiotic interaction.  相似文献   

18.
Cancer cells have been found to express immunoglobulin G (IgG), but the exact functions and underlying mechanisms of cancer-derived IgG remain elusive. In this study, we first confirmed that downregulation of IgG restrained the growth and proliferation of cancer cells in vitro and in vivo. To elucidate its mechanism, we carried out a co-immunoprecipitation assay in HeLa cells and identified 27 potential IgG-interacting proteins. Among them, receptor of activated protein kinase C 1 (RACK1), ras-related nuclear protein (RAN) and peroxiredoxin 1 (PRDX1) are closely related to cell growth and oxidative stress, which prompted us to investigate the mechanism of action of IgG in the above phenomena. Upon confirmation of the interactions between IgG and the three proteins, further experiments revealed that downregulation of cancer-derived IgG lowered levels of intracellular reactive oxygen species (ROS) by enhancing cellular total antioxidant capacity. In addition, a few ROS scavengers, including catalase (CAT), dimethylsulfoxide (DMSO), n-acetylcysteine (NAC) and superoxide dismutase (SOD), further inhibited the growth of IgG-deficient cancer cells through suppressing mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK) signaling pathway induced by a low level of intracellular ROS, whereas exogenous hydrogen peroxide (H2O2) at low concentration promoted their survival via increasing intracellular ROS levels. Similar results were obtained in an animal model and human tissues. Taken together, our results demonstrate that cancer-derived IgG can enhance the growth and proliferation of cancer cells via inducing the production of ROS at low level. These findings provide new clues for understanding tumor proliferation and designing cancer therapy.  相似文献   

19.
The mammalian growth factor erv1-like (GFER) gene encodes a sulfhydryl oxidase enzyme, named Augmenter of Liver Regeneration (ALR). Recently it has been demonstrated that ALR supports cell proliferation acting as an anti-apoptotic factor. This effect is determined by ALR ability to support the anti-apoptotic gene expression and to preserve cellular normoxic conditions. We recently demonstrated that the addition of recombinant ALR (rALR) in the culture medium of H2O2-treated neuroblastoma cells reduces the lethal effects induced by the hydrogen peroxide. Similar data have been reported in the regenerating liver tissue from partially hepatectomized rats treated with rALR. The purpose of the present study was to evaluate the effect of the GFER inhibition, via the degradation of the complementary mRNA by the specific siRNA, on the behaviour of the apoptosis (apoptotic gene and caspase expression and apoptotic cell number) and of the oxidative stress-induced parameters (reactive oxygen species (ROS), clusterin expression and mitochondrial integrity) in T98G glioma cells. The results revealed a reduction of (i) ALR, (ii) clusterin and (iii) bcl-2 and an increase of (iv) caspase-9, activated caspase-3, ROS, apoptotic cell number and mitochondrial degeneration. These data confirm the anti-apoptotic role of ALR and its anti-oxidative properties, and shed some light on the molecular pathways through which ALR modulates its biological effects.  相似文献   

20.
In the present study, the possible involvement of reactive oxygen species (ROS) in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis of Bombyx mori prothoracic glands (PGs) was investigated. Results showed that PTTH treatment resulted in a rapidly transient increase in the intracellular ROS concentration, as measured using 2′,7′-dichlorofluorescin diacetate (DCFDA), an oxidation-sensitive fluorescent probe. The antioxidant, N-acetylcysteine (NAC), abolished PTTH-induced increase in fluorescence. Furthermore, PTTH-induced ROS production was partially inhibited by the NAD(P)H oxidase inhibitor, apocynin, indicating that NAD(P)H oxidase is one of the sources for PTTH-stimulated ROS production. Four mitochondrial oxidative phosphorylation inhibitors (rotenone, antimycin A, the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), and diphenylene iodonium (DPI)) significantly attenuated ROS production induced by PTTH. These data suggest that the activity of complexes I and III in the electron transport chain and the mitochondrial inner membrane potential (ΔΨ) contribute to PTTH-stimulated ROS production. In addition, PTTH-stimulated ecdysteroidogenesis was greatly inhibited by treatment with either NAC or mitochondrial inhibitors (rotenone, antimycin A, FCCP, and DPI), but not with apocynin. These results indicate that mitochondria-derived, but not membrane NAD(P)H oxidase-mediated ROS signaling, is involved in PTTH-stimulated ecdysteroidogenesis of PGs in B. mori.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号