首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
An unknown antibiotic, ophiocordin, C21H22N2O8, MW: 430, was isolated from submerged cultures of Cordyceps ophioglossoides, strain TÜ 276, grown in a glycerol soybean meal medium at 27°C. The antibiotic was extracted from acidified culture fluids with n-butanol and purified by subsequent column chromatography on DEAE-Sephadex and cellulose. Studies including nuclear magnetic resonance and mass spectrometry resulted in proposals of partial structures of the molecule. Inhibition by ophiocordin could be demonstrated for a small number of fungi belonging to different taxonomic groups. Bacteria were not inhibited. The antifungal effect was antagonized by ammonia and nitrate ions and by certain amino acids.Metabolic products of microorganisms, 161st Communication. 160. Mitteilung: J. M. Müller, H. Fuhrer, J. Gruner, and W. Voser: Conocandin, ein fungistatisches Antibiotikum aus Hormococcus conorum (Sacc. et Roum.) Roback. Helv. chim. Acta 59, 2506–2514 (1976)  相似文献   

3.
The Brevicompactum clade is recognized as a separate lineage in Trichoderma/Hypocrea. This includes T. brevicompactum and the new species T. arundinaceum, T. turrialbense, T. protrudens and Hypocrea rodmanii. The closest relative of the Brevicompactum clade is the Lutea clade. With the exception of H. rodmanii, all members of this clade produce the simple trichothecene-type toxins harzianum A or trichodermin. All members of the clade produce peptaibiotics, including alamethicins. Strains previously reported as T. harzianum (ATCC 90237), T. viride (NRRL 3199) or Hypocrea sp. (F000527, CBS 113214) to produce trichothecenes are reidentified as T. arundinaceum. The Brevicompactum clade is not closely related to species that have biological application.  相似文献   

4.
The composition of genetic variation in a population or species is shaped by the number of events that led to the founding of the group. We consider a neutral coalescent model of two populations, where a derived population is founded as an offshoot of an ancestral population. For a given locus, using both recursive and nonrecursive approaches, we compute the probability distribution of the number of genetic founding lineages that have given rise to the derived population. This number of genetic founding lineages is defined as the number of ancestral individuals that contributed at the locus to the present-day derived population, and is formulated in terms of interspecific coalescence events. The effects of sample size and divergence time on the probability distribution of the number of founding lineages are studied in detail. For 99.99% of the loci in the derived population to each have one founding lineage, the two populations must be separated for 9.9N generations. However, only approximately 0.87N generations must pass since divergence for 99.99% of the loci to have <6 founding lineages. Our results are useful as a prior expectation on the number of founding lineages in scenarios that involve the evolution of one population from the splitting of an ancestral group, such as in the colonization of islands, the formation of polyploid species, and the domestication of crops and livestock from wild ancestors.  相似文献   

5.
Differences in secondary metabolites produced by lichens are not always genetically based, and even if genetically based may represent only a one gene difference. Taxonomic decision involving secondary metabolism should be based on the degree of difference demonstrated between biosynthetic pathways, not on the individual products. No taxonomic status should be accorded to entities which differ only in products from a single biosynthetic pathway, but varietal status should be given to those which have different biosynthetic pathways. Species status is justified if chemistry is correlated with morphological or proven physiological difference, or if more than one major biosynthetic system is involved. While ecological and biogeographic differences point to the likelihood of differences being found, if no differences can be demonstrated which in themselves justify taxonomic separation, then features ought not be allowed to influence the taxonomic decision.  相似文献   

6.
Heimuer, Auricularia heimuer, is one of the most famous traditional Chinese foods and medicines, and it is the third most important cultivated mushroom worldwide. The aim of this study is to develop genomic resources for A. heimuer to furnish tools that can be used to study its secondary metabolite production capability, wood degradation ability and biosynthesis of polysaccharides. The genome was obtained from single spore mycelia of the strain Dai 13782 by using combined high-throughput Illumina HiSeq 4000 system with the PacBio RSII long-read sequencing platform. Functional annotation was accomplished by blasting protein sequences with different public available databases to obtain their corresponding annotations. It is 49.76 Mb in size with a N50 scaffold size of 1,350,668 bp and encodes 16,244 putative predicted genes. This is the first genome-scale assembly and annotation for A. heimuer, which is the third sequenced species in Auricularia.  相似文献   

7.
【背景】纳他霉素(Natamycin)是一种天然、广谱、高效的多烯大环内酯类抗真菌剂,褐黄孢链霉菌(Streptomyces gilvosporeus)是一种重要的纳他霉素产生菌。目前S. gilvosporeus基因组序列分析还未有报道,限制了该菌中纳他霉素及其他次级代谢产物合成及调控的研究。【目的】解析纳他霉素高产菌株S. gilvosporeus F607的基因组序列信息,挖掘其次级代谢产物基因资源,为深入研究该菌株的纳他霉素高产机理及生物合成调控机制奠定基础。【方法】利用相关软件对F607菌株的基因组序列进行基因预测、功能注释、进化分析和共线性分析,并预测次级代谢产物合成基因簇;对纳他霉素生物合成基因簇进行注释分析,比较分析不同菌种中纳他霉素生物合成基因簇的差异;分析预测S.gilvosporeusF607中纳他霉素生物合成途径。【结果】F607菌株基因组总长度为8482298bp,(G+C)mol%为70.95%,分别在COG、GO、KEGG数据库提取到5 062、4 428、5063个基因的注释信息。同时,antiSMASH软件预测得到29个次级代谢产物合成基因簇,其中纳他霉素基因簇与S.natalensis、S. chattanoogensis等菌株的纳他霉素基因簇相似性分别为81%和77%。除2个参与调控的sngT和sgnH基因和9个未知功能的orf基因有差异外,S. gilvosporeus F607基因簇中其他纳他霉素生物合成基因及其排列顺序与已知的纳他霉素基因簇高度一致。【结论】分析了S. gilvosporeus全基因组信息,预测了S. gilvosporeus F607中纳他霉素生物合成的途径,为从基因组层面上解析S. gilvosporeus F607菌株高产纳他霉素的内在原因提供了基础数据,为揭示纳他霉素高产的机理及工业化生产和未来新药的发现奠定了良好的基础。  相似文献   

8.
9.
10.
The increasing popularity of molecular taxonomy will undoubtedly have a major impact on the practice of conservation biology. The appeal of such approaches is undeniable since they will clearly be an asset in rapid biological assessments of poorly known taxa or unexplored areas, and for discovery of cryptic biodiversity. However, as an approach for diagnosing units for conservation, some caution is warranted. The essential issue is that mitochondrial DNA variation is unlikely to be causally related to, and thus correlated with, ecologically important components of fitness. This is true for DNA barcoding, molecular taxonomy in general, or any technique that relies on variation at a single, presumed neutral locus. Given that natural selection operates on a time scale that is often much more rapid than the rates of mutation and allele frequency changes due to genetic drift, neutral genetic variation at a single locus can be a poor predictor of adaptive variation within or among species. Furthermore, reticulate processes, such as introgressive hybridization, may also constrain the utility of molecular taxonomy to accurately detect significant units for conservation. A survey of published genetic data from the Lepidoptera indicates that these problems may be more prevalent than previously suspected. Molecular approaches must be used with caution for conservation genetics which is best accomplished using large sample sizes over extensive geography in addition to data from multiple loci. Matthew L. Forister, Chris C. Nice and James A. Fordyce contributed equally to this paper.  相似文献   

11.
Murid rodents show much less variation in isochore base composition than do most other mammals, a difference which has been referred to as the murid shift. We have investigated the murid shift by asking (1) whether the murid shift is ongoing and (2) whether there is any evidence of selection or biased gene conversion affecting base composition in the present-day mouse genome. By estimating the ancestral base composition of protein-coding genes in murids we can confirm that the murid shift is ongoing. Tests using nongenic polymorphism data fail to reject the hypothesis that base composition is due to mutation bias alone. However, the patterns of compositional change suggested by the polymorphism and divergence data differ, suggesting the possibility of two murid shifts.  相似文献   

12.
Studying development in diverse taxa can address a central issue in evolutionary biology: how morphological diversity arises through the evolution of developmental mechanisms. Two of the best-studied developmental model organisms, the arthropod Drosophila and the nematode Caenorhabditis elegans, have been found to belong to a single protostome superclade, the Ecdysozoa. This finding suggests that a closely related ecdysozoan phylum could serve as a valuable model for studying how developmental mechanisms evolve in ways that can produce diverse body plans. Tardigrades, also called water bears, make up a phylum of microscopic ecdysozoan animals. Tardigrades share many characteristics with C. elegans and Drosophila that could make them useful laboratory models, but long-term culturing of tardigrades historically has been a challenge, and there have been few studies of tardigrade development. Here, we show that the tardigrade Hypsibius dujardini can be cultured continuously for decades and can be cryopreserved. We report that H. dujardini has a compact genome, a little smaller than that of C. elegans or Drosophila, and that sequence evolution has occurred at a typical rate. H. dujardini has a short generation time, 13–14 days at room temperature. We have found that the embryos of H. dujardini have a stereotyped cleavage pattern with asymmetric cell divisions, nuclear migrations, and cell migrations occurring in reproducible patterns. We present a cell lineage of the early embryo and an embryonic staging series. We expect that these data can serve as a platform for using H. dujardini as a model for studying the evolution of developmental mechanisms.  相似文献   

13.
14.

Background

Kutzneria is a representative of a rarely observed genus of the family Pseudonocardiaceae. Kutzneria species were initially placed in the Streptosporangiaceae genus and later reconsidered to be an independent genus of the Pseudonocardiaceae. Kutzneria albida is one of the eight known members of the genus. This strain is a unique producer of the glycosylated polyole macrolide aculeximycin which is active against both bacteria and fungi. Kutzneria albida genome sequencing and analysis allow a deeper understanding of evolution of this genus of Pseudonocardiaceae, provide new insight in the phylogeny of the genus, as well as decipher the hidden secondary metabolic potential of these rare actinobacteria.

Results

To explore the biosynthetic potential of Kutzneria albida to its full extent, the complete genome was sequenced. With a size of 9,874,926 bp, coding for 8,822 genes, it stands alongside other Pseudonocardiaceae with large circular genomes. Genome analysis revealed 46 gene clusters potentially encoding secondary metabolite biosynthesis pathways. Two large genomic islands were identified, containing regions most enriched with secondary metabolism gene clusters. Large parts of this secondary metabolism “clustome” are dedicated to siderophores production.

Conclusions

Kutzneria albida is the first species of the genus Kutzneria with a completely sequenced genome. Genome sequencing allowed identifying the gene cluster responsible for the biosynthesis of aculeximycin, one of the largest known oligosaccharide-macrolide antibiotics. Moreover, the genome revealed 45 additional putative secondary metabolite gene clusters, suggesting a huge biosynthetic potential, which makes Kutzneria albida a very rich source of natural products. Comparison of the Kutzneria albida genome to genomes of other actinobacteria clearly shows its close relations with Pseudonocardiaceae in line with the taxonomic position of the genus.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-885) contains supplementary material, which is available to authorized users.  相似文献   

15.
《遗传学报》2022,49(2):120-131
Melastomataceae has abundant morphological diversity with high economic and ornamental merit in Myrtales. The phylogenetic position of Myrtales is still contested. Here, we report the chromosome-level genome assembly of Melastoma dodecandrum in Melastomataceae. The assembled genome size is 299.81 Mb with a contig N50 value of 3.00 Mb. Genome evolution analysis indicated that M. dodecandrum, Eucalyptus grandis, and Punica granatum were clustered into a clade of Myrtales and formed a sister group with the ancestor of fabids and malvids. We found that M. dodecandrum experienced four whole-genome polyploidization events: the ancient event was shared with most eudicots, one event was shared with Myrtales, and the other two events were unique to M. dodecandrum. Moreover, we identified MADS-box genes and found that the AP1-like genes expanded, and AP3-like genes might have undergone subfunctionalization. The SUAR63-like genes and AG-like genes showed different expression patterns in stamens, which may be associated with heteranthery. In addition, we found that LAZY1-like genes were involved in the negative regulation of stem branching development, which may be related to its creeping features. Our study sheds new light on the evolution of Melastomataceae and Myrtales, which provides a comprehensive genetic resource for future research.  相似文献   

16.
Malvids is one of the largest clades of rosids, includes 58 families and exhibits remarkable morphological and ecological diversity. Here, we report a high-quality chromosome-level genome assembly for Euscaphis japonica, an early-diverging species within malvids. Genome-based phylogenetic analysis suggests that the unstable phylogenetic position of E. japonica may result from incomplete lineage sorting and hybridization event during the diversification of the ancestral population of malvids. Euscaphis japonica experienced two polyploidization events: the ancient whole genome triplication event shared with most eudicots (commonly known as the γ event) and a more recent whole genome duplication event, unique to E. japonica. By resequencing 101 samples from 11 populations, we speculate that the temperature has led to the differentiation of the evergreen and deciduous of E. japonica and the completely different population histories of these two groups. In total, 1012 candidate positively selected genes in the evergreen were detected, some of which are involved in flower and fruit development. We found that reddening and dehiscence of the E. japonica pericarp and long fruit-hanging time promoted the reproduction of E. japonica populations, and revealed the expression patterns of genes related to fruit reddening, dehiscence and abscission. The key genes involved in pentacyclic triterpene synthesis in E. japonica were identified, and different expression patterns of these genes may contribute to pentacyclic triterpene diversification. Our work sheds light on the evolution of E. japonica and malvids, particularly on the diversification of E. japonica and the genetic basis for their fruit dehiscence and abscission.  相似文献   

17.
18.
The shape of evolution: systematic tree topology   总被引:2,自引:0,他引:2  
Three hypotheses that predict probabilities associated with various tree shapes, or topologies, are compared with observed topology frequencies for a large number of 4, 5, 6 and 7-member trees. The united data on these n-member trees demonstrate that both the equiprobable and proportional-to-distinguishable-types hypotheses poorly predict tree topologies, while all observed topology frequencies are similar to predictions of a simple Markovian dichotomous branching hypothesis. Differences in topology frequencies between phenetic and non-phenetic trees are observed, but their statistical significance is uncertain. Relative frequencies of highly asymmetrical topologies are larger, and those of symmetrical topologies are smaller, in phenetic than in non-phenetic trees. The fact that a simple Markovian branching process, which assumes that each species has an equal probability of speciating in each time period, can predict tree topologies offers promise. Refinement of Markovian branching hypotheses to include the possibility of multiple furcations, differential speciation and extinction rates for different groups of organisms as well as for a single group through geological time, hybrid speciation, introgression, and lineage fusion will be necessary to produce realistic models of lineage diversification.  相似文献   

19.
20.
Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10 000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号