首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
RNA interference is one of the most revolutionary tools in the study of gene function, particularly in non-model systems. However, in Bombyx mori, as with many lepidopteran species, attempts at systemic RNAi have had mixed success. Gene identification and phylogenetic analyses suggest that Bombyx has the core RNAi machinery, which is necessary to undergo RNAi as a cellular response. We introduced sid genes from Caenorhabditis elegans into Bombyx BmN4 cells to enhance the uptake of dsRNA and revealed that the SID-1 protein, but not SID-2, has the ability to endow the RNAi effect with the addition of dsRNA to the medium. Observed RNAi effect was dependent on both the levels of sid-1 expression and the concentration of the dsRNA. These results suggest that SID-1 promotes the uptake of dsRNA from the medium into Bombyx cells. We generated transgenic animals that express sid-1 but have not detected significant enhancements of in vivo phenotype in response to the injection of the dsRNA into hemocoel.  相似文献   

3.
Ingested dsRNAs trigger RNA interference (RNAi) in many invertebrates, including the nematode Caenorhabditis elegans. Here we show that the C.?elegans apical intestinal membrane protein SID-2 is required in C.?elegans for the import of ingested dsRNA and that, when expressed in Drosophila S2 cells, SID-2 enables the uptake of dsRNAs. SID-2-dependent dsRNA transport requires an acidic extracellular environment and is selective for dsRNAs with at least 50 base pairs. Through structure-function analysis, we identify several SID-2 regions required for this activity, including three extracellular, positively charged histidines. Finally, we find that SID-2-dependent transport is inhibited by drugs that interfere with vesicle transport. Therefore, we propose that environmental dsRNAs are imported from the acidic intestinal lumen by SID-2 via endocytosis and are released from internalized vesicles in a secondary step mediated by the dsRNA channel SID-1. Similar multistep mechanisms may underlie the widespread observations of environmental RNAi.  相似文献   

4.
RNA interference (RNAi) is a biological phenomenon that silences the expression of genes of interest. Passive double-stranded RNA (dsRNA) uptake has been uniquely observed in Caenorhabditis elegans due to the expression of systemic RNAi defective-1 (SID-1). We report that ectopic expression of CeSID-1 endows the Sf9 cells with a capacity for soaking RNAi. Soaking the Sf9-SID1 with dsRNA corresponding to either exogenous or endogenous target genes induced a significant decrease in the amount of mRNA or protein. These results enabled us to modify the target proteins of baculovirus expression vector system in both quantities and posttranslational modifications. The current low-cost and high-efficiency RNAi system is useful for high-throughput gene function analysis and mass production of recombinant protein.  相似文献   

5.
Systemic RNAi in Caenorhabditis elegans requires the widely conserved transmembrane protein SID-1 to transport RNAi silencing signals between cells. When expressed in Drosophila S2 cells, C. elegans SID-1 enables passive dsRNA uptake from the culture medium, suggesting that SID-1 functions as a channel for the transport of double-stranded RNA (dsRNA). Here we show that nucleic acid transport by SID-1 is specific for dsRNA and that addition of dsRNA to SID-1 expressing cells results in changes in membrane conductance, which indicate that SID-1 is a dsRNA gated channel protein. Consistent with passive bidirectional transport, we find that the RNA induced silencing complex (RISC) is required to prevent the export of imported dsRNA and that retention of dsRNA by RISC does not seem to involve processing of retained dsRNA into siRNAs. Finally, we show that mimics of natural molecules that contain both single- and double-stranded dsRNA, such as hairpin RNA and pre-microRNA, can be transported by SID-1. These findings provide insight into the nature of potential endogenous RNA signaling molecules in animals.  相似文献   

6.
The systemic RNA interference defective-1 (SID-1) can transport double-stranded RNA (dsRNA) into cytosol across the cytoplasmic membrane. We report here that ectopic expression of Caenorhabditis elegans SID-1 allows BmN4 cells to import extracellular plasmid dsDNA into cells via the direct soaking method. Interestingly, BmN4-SID1 cells incorporate dsRNA and plasmid DNA simultaneously. Furthermore, the ectopic SID-1 allows us to establish a stably transformed cell line by the simple soaking method. Our results provide an alternative method for silkworm gene function analysis with low cost and low cell toxicity.  相似文献   

7.
8.
The double-stranded RNA (dsRNA) mediated RNA interference (RNAi) is widely employed in silkworm and its tissue-derived cell lines for gene function analysis. Baculovirus expression vector system (BEVS) has an advantage for large-scale protein expression. Previously, combining these useful tools, we improved traditional AcMNPV-Sf9 BEVS to produce modified target glycoproteins, where the ectopic expression of Caenorhabditis elegans systemic RNAi defective-1 (SID-1) was found to be valuable for soaking RNAi. In current study, we applied CeSID-1 protein to a Bombyx mori NPV (BmNPV)-hypersensitive Bme21 cell line and investigated its properties both in soaking RNAi ability and recombinant protein expression. The soaking RNAi-mediated suppression in the Bme21 cell enables us to produce modified glycoproteins of interest in BmNPV–Bme21 BEVS.  相似文献   

9.
Lysosomes are thought to be the major intracellular compartment for the degradation of macromolecules. We recently identified a novel type of autophagy, RNautophagy, where RNA is directly taken up by lysosomes in an ATP-dependent manner and degraded. However, the mechanism of RNA translocation across the lysosomal membrane and the physiological role of RNautophagy remain unclear. In the present study, we performed gain- and loss-of-function studies with isolated lysosomes, and found that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference deficient-1), mediates RNA translocation during RNautophagy. We also observed that SIDT2 is a transmembrane protein, which predominantly localizes to lysosomes. Strikingly, knockdown of Sidt2 inhibited up to ?50% of total RNA degradation at the cellular level, independently of macroautophagy. Moreover, we showed that this impairment is mainly due to inhibition of lysosomal RNA degradation, strongly suggesting that RNautophagy plays a significant role in constitutive cellular RNA degradation. Our results provide a novel insight into the mechanisms of RNA metabolism, intracellular RNA transport, and atypical types of autophagy.  相似文献   

10.
SID-1 is a transmembrane protein that mediates systemic RNA interference in Caenorhabditis elegans. Here we show that the mammalian SID-1 homologue FLJ20174 localizes to the cell membrane of human cells and enhances their uptake of small interfering RNA (siRNA), resulting in increased siRNA-mediated gene silencing efficacy. This is the first demonstration to show that overexpression of a membrane protein enhances siRNA internalization in mammalian cells. This observation raises the possibility of enhancing the efficacy of RNA interference.  相似文献   

11.
RNA interference (RNAi) is a conserved mechanism that catalyzes sequence-specific gene silencing and has been used for loss-of-function genetic screens in many organisms. Here, we demonstrated that the expression of Caenorhabditis elegans SID-1 (CeSID-1) could trigger effective gene silencing in the cultured silkworm cell line, BmN4 (BmN4-SID1). Soaking the BmN4-SID1 in dsRNA corresponding to endogenous target genes induced a significant decrease of the amount of mRNA or protein. A small amount of dsRNA was enough to silence the target gene in a few days. Overexpression of CeSID-1 did not affect the cell viability. Our results suggest that BmN4-SID1 can be used in many applications in silkworm cells and will become a valuable resource for gene analysis.  相似文献   

12.
《Journal of Asia》2020,23(4):1160-1164
Despite extensive research during the past decade elucidating the mechanism of RNA interference (RNAi) in insects, it is not clear how ingested or injected double-stranded RNA (dsRNA) triggers RNAi response in the whole body or even its progeny, which is referred to as systemic RNAi. In the present study, we aim to understand how the dsRNA delivered into cells causes systemic RNAi using Colorado potato beetle cells (Lepd-SL1). We first tested if dsRNA treatment induces systemic RNAi in Lepd-SL1 cells. Exposure of a new batch of Lepd-SL1 cells to the conditioned medium where Lepd-SL1 cells treated with dsRNA targeting inhibitor of apoptosis were grown for 6 h induced apoptosis in these new batch of cells. We hypothesized the exosomes in the conditioned medium are responsible for RNAi-inducing effect. To test this hypothesis, we isolated exosomes from the conditioned medium from Lepd-SL1 cells that had been treated with dsGFP (dsRNA targeting gene coding for green fluorescent protein) or dsLuc (dsRNA targeting gene coding for the luciferase) were grown. RNA present in the purified exosomes was analyzed to check if long dsRNA or siRNA is accumulated in them. The results from the electrophoretic mobility shift assay clearly showed that the long dsRNAs are present in the exosomes. By knockdown of candidate genes involved in endosome recycling and generation pathways, we found that Rab4 and Rab35 are involved in exosome production and transport.  相似文献   

13.
Lysosomes degrade macromolecules such as proteins and nucleic acids. We previously identified 2 novel types of autophagy, RNautophagy and DNautophagy, where lysosomes directly take up RNA and DNA, in an ATP-dependent manner, for degradation. We have also reported that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference defective-1), mediates RNA translocation during RNautophagy. In this addendum, we report that SIDT2 also mediates DNA translocation in the process of DNautophagy. These findings help elucidate the mechanisms underlying the direct uptake of nucleic acids by lysosomes and the physiological functions of DNautophagy.  相似文献   

14.
RNA interference (RNAi) is a promising technology for the development of next-generation insect pest control products. Though RNAi is efficient and systemic in coleopteran insects, it is inefficient and variable in lepidopteron insects. In this study, we explored the possibility of improving RNAi in the fall armyworm (FAW), Spodoptera frugiperda by conjugating double-stranded RNA (dsRNA) with biodegradable chitosan (Chi). dsRNA conjugated with chitosan was protected from degradation by endonucleases present in Sf9 cell-conditioned medium, hemolymph, and midgut lumen contents collected from the FAW larvae. Chi–dsRNA complexes showed reduced accumulation in the endosomes of Sf9 cells and FAW tissues. Exposing chitosan formulated dsRNA in Sf9 cells and the tissues induced a significant knockdown of endogenous genes. Chi–dsIAP fed to FAW larvae induced knockdown of iap gene, growth retardation, and mortality. Processing of dsRNA into small interfering RNA was detected with chitosan-conjugated 32P-UTP-labeled ds green fluorescent protein in Sf9 cells and FAW larval tissues. Overall, these data suggest that dsRNA conjugated with chitosan helps dsRNA escape from the endosomes and improves RNAi efficiency in FAW cells and tissues.  相似文献   

15.
Pratt AJ  Rambo RP  Lau PW  MacRae IJ 《PloS one》2012,7(4):e33607
In C. elegans, the cell surface protein Sid-1 imports extracellular dsRNA into the cytosol of most non-neuronal cells, enabling systemic spread of RNA interference (RNAi) throughout the worm. Sid-1 homologs are found in many other animals, although for most a function for the protein has not yet been established. Sid-1 proteins are composed of an N-terminal extracellular domain (ECD) followed by 9-12 predicted transmembrane regions. We developed a baculovirus system to express and purify the ECD of the human Sid-1 protein SidT1. Recombinant SidT1 ECD is glycosylated and spontaneously assembles into a stable and discrete tetrameric structure. Electron microscopy (EM) and small angle x-ray scattering (SAXS) studies reveal that the SidT1 ECD tetramer is a compact, puck-shaped globular particle, which we hypothesize may control access of dsRNA to the transmembrane pore. These characterizations provide inroads towards understanding the mechanism of this unique RNA transport system from structural prospective.  相似文献   

16.
17.
Application of RNA interference (RNAi) for insect pest management is limited by variable efficiency of RNAi in different insect species. In Locusta migratoria, RNAi is highly efficient through injection of dsRNA, but oral delivery of dsRNA is much less effective. Efforts to understand this phenomenon have shown that dsRNA is more rapidly degraded in midgut fluid than in hemolymph due to nuclease enzyme activity. In the present study, we identified and characterized two full-length cDNAs of double-stranded RNA degrading enzymes (dsRNase) from midgut of L. migratoria, which were named LmdsRNase2 and LmdsRNase3. Gene expression analysis revealed that LmdsRNase2 and LmdsRNase3 were predominantly expressed in the midgut, relatively lower expression in gastric caeca, and trace expression in other tested tissues. Incubation of dsRNA in midgut fluid from LmdsRNase3-suppressed larvae or control larvae injected with dsGFP resulted in high levels of degradation; however, dsRNA incubated in midgut fluid from LmdsRNase2-suppressed larvae was more stable, indicating LmdsRNase2 is responsible for dsRNA degradation in the midgut. To verify the biological function of LmdsRNase2 in vivo, nymphs were injected with dsGFP, dsLmdsRNase2 or dsLmdsRNase3 and chitinase 10 (LmCht10) or chitin synthase 1 (LmCHS1) dsRNA were orally delivered. Mortality associated with reporter gene knockdown was observed only in locusts injected with dsLmdsRNase2 (48% and 22%, for dsLmCht10 and dsLmCHS1, respectively), implicating LmdsRNase2 in reducing RNAi efficiency. Furthermore, recombinantly expressed LmdsRNase2 fusion proteins degraded dsRNA rapidly, whereas LmdsRNase3 did not. These results suggest that rapid degradation of dsRNA by dsRNase2 in the midgut is an important factor causing low RNAi efficiency when dsRNA is orally delivered in the locust.  相似文献   

18.
RNA interference (RNAi) is a valuable method for understanding the gene function and holds great potential for insect pest management. While RNAi is efficient and systemic in coleopteran insects, RNAi is inefficient in lepidopteran insects. In this study, we explored the possibility of improving RNAi in the fall armyworm (FAW), Spodoptera frugiperda cells by formulating dsRNA with Cellfectin II (CFII) transfection reagent. The CFII formulated dsRNA was protected from degradation by endonucleases present in Sf9 cells conditioned medium, hemolymph and midgut lumen contents collected from the FAW larvae. Lipid formulated dsRNA also showed reduced accumulation in the endosomes of Sf9 cells and FAW tissues. Exposing Sf9 cells and tissues to CFII formulated dsRNA caused a significant knockdown of endogenous genes. CFII formulated dsIAP fed to FAW larvae induced knockdown of iap gene, growth retardation and mortality. Processing of dsRNA into siRNA was detected in Sf9 cells and Spodoptera frugiperda larvae treated with CFII conjugated 32P-UTP labeled dsGFP. Overall, the present study concluded that delivering dsRNA formulated with CFII transfection reagent helps dsRNA escapes from the endosomal accumulation and improved RNAi efficiency in the FAW cells and tissues.  相似文献   

19.
20.
The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle’s body cavity.In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号