首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently described the identification of a centrosome/spindle pole associated protein, CSPP, involved in cell cycle progression. Here we report a CSPP isoform denoted CSPP-L, with a 294 amino acids longer N-terminus and a 51 amino acids insertion located in the coiled-coil mid-domain. Expression analysis indicates an inverse cell cycle dependent regulation. CSPP mRNA expression is highest in G1 whereas CSPP-L expression is highest in G2/M. Ectopic expression of CSPP-L impairs cell cycle progression weaker in G1 than CSPP. Furthermore, normal mitotic phenotypes were observed in CSPP-L but not in CSPP transfectants. CSPP-L relocates from spindle microtubules and poles in metaphase to the mid-spindle in anaphase and concentrates at the mid-body in telophase/cytokinesis. CSPP-L high-expressing mitotic cells were predominantly characterized by lagging chromosomes or monopolar spindles, in contrast to the predominant multipolar spindles observed with CSPP expression. The different effects of CSPP and CSPP-L on microtubule organization in mitosis depend on the coiled-coil mid-domain insertion. The common C-terminal domain is required to repress that activity until mitosis. Notably, this C-terminal domain alone can associate with centrosomes in a microtubule independent manner. Taken together, CSPP and CSPP-L interact with centrosomes and microtubules and can differently affect microtubule organization.  相似文献   

2.
We described previously the cell cycle- and microtubule-related functions of two splice isoforms of the centrosome spindle pole-associated protein (CSPP and CSPP-L). Here, we show that endogenous CSPP isoforms not only localize to centrosomes and the midbody in cycling cells but also extend to the cilia axoneme in postmitotic resting cells. They are required for ciliogenesis in hTERT-RPE1 cells in vitro and are expressed in ciliated renal, retinal, and respiratory cells in vivo. We report that CSPP isoforms require their common C-terminal domain to interact with Nephrocystin 8 (NPHP8/RPGRIP1L) and to form a ternary complex with NPHP8 and NPHP4. We find CSPP-L to be required for the efficient localization of NPHP8 but not NPHP4 to the basal body. The ciliogenesis defect in hTERT-RPE1 cells is, however, not mediated through loss of NPHP8. Similar to the effects of ectopical expression of CSPP-L, cilia length increased in NPHP8-depleted cells. Our results thus suggest that CSPP proteins may be involved in further cytoskeletal organization of the basal body and its primary cilium. To conclude, we have identified a novel, nonmitotic function of CSPP proteins placing them into a ciliary protein network crucial for normal renal and retinal tissue architecture and physiology.  相似文献   

3.
In most kinds of animal cells, the centrosome serves as the main microtubule organizing center (MTOC) that nucleates microtubule arrays throughout the cytoplasm to maintain cell structure, cell division and intracellular transport. Whereas in epithelial cells, non-centrosomal MTOCs are established in the apical domain for generating asymmetric microtubule fibers and cilia in epithelial cells for the organ morphogenesis during embryonic development. However, the mechanism by which MTOCs localize to the apical domain in epithelial cells remains largely unknown. Here, we show that Mid1ip1b has a close interaction with γ-tubulin protein, the central component of MTOC, and modulates lumen opening of the neural tube, gut, intestine, and kidney of zebrafish. Knockdown or dominant negative effect of Mid1ip1b resulted in failure of lumen formation of the organs as aforementioned. Moreover, the non-centrosomal MTOCs were unable to orientate to the apical domain in Mid1ip1b knockdown epithelial cells, and the centrosomal MTOCs were inaccurately placed in the apical domain, resulting in defective formation of asymmetric microtubules and misplacement of cilia in the apical domain. These data uncover a molecule that controls the proper localization of MTOCs in the apical domain in epithelial cells for organ morphogenesis during embryonic development.  相似文献   

4.
Joubert syndrome (JBTS) is a recessive ciliopathy in which a subset of affected individuals also have the skeletal dysplasia Jeune asphyxiating thoracic dystrophy (JATD). Here, we have identified biallelic truncating CSPP1 (centrosome and spindle pole associated protein 1) mutations in 19 JBTS-affected individuals, four of whom also have features of JATD. CSPP1 mutations explain ∼5% of JBTS in our cohort, and despite truncating mutations in all affected individuals, the range of phenotypic severity is broad. Morpholino knockdown of cspp1 in zebrafish caused phenotypes reported in other zebrafish models of JBTS (curved body shape, pronephric cysts, and cerebellar abnormalities) and reduced ciliary localization of Arl13b, further supporting loss of CSPP1 function as a cause of JBTS. Fibroblasts from affected individuals with CSPP1 mutations showed reduced numbers of primary cilia and/or short primary cilia, as well as reduced axonemal localization of ciliary proteins ARL13B and adenylyl cyclase III. In summary, CSPP1 mutations are a major cause of the Joubert-Jeune phenotype in humans; however, the mechanism by which these mutations lead to both JBTS and JATD remains unknown.  相似文献   

5.
Joubert syndrome and related disorders (JSRDs) are genetically heterogeneous and characterized by a distinctive mid-hindbrain malformation. Causative mutations lead to primary cilia dysfunction, which often results in variable involvement of other organs such as the liver, retina, and kidney. We identified predicted null mutations in CSPP1 in six individuals affected by classical JSRDs. CSPP1 encodes a protein localized to centrosomes and spindle poles, as well as to the primary cilium. Despite the known interaction between CSPP1 and nephronophthisis-associated proteins, none of the affected individuals in our cohort presented with kidney disease, and further, screening of a large cohort of individuals with nephronophthisis demonstrated no mutations. CSPP1 is broadly expressed in neural tissue, and its encoded protein localizes to the primary cilium in an in vitro model of human neurogenesis. Here, we show abrogated protein levels and ciliogenesis in affected fibroblasts. Our data thus suggest that CSPP1 is involved in neural-specific functions of primary cilia.  相似文献   

6.
Primary cilia are antenna-like sensory microtubule structures that extend from basal bodies, plasma membrane–docked mother centrioles. Cellular quiescence potentiates ciliogenesis, but the regulation of basal body formation is not fully understood. We used reverse genetics to test the role of the small calcium-binding protein, centrin2, in ciliogenesis. Primary cilia arise in most cell types but have not been described in lymphocytes. We show here that serum starvation of transformed, cultured B and T cells caused primary ciliogenesis. Efficient ciliogenesis in chicken DT40 B lymphocytes required centrin2. We disrupted CETN2 in human retinal pigmented epithelial cells, and despite having intact centrioles, they were unable to make cilia upon serum starvation, showing abnormal localization of distal appendage proteins and failing to remove the ciliation inhibitor CP110. Knockdown of CP110 rescued ciliation in CETN2-deficient cells. Thus, centrin2 regulates primary ciliogenesis through controlling CP110 levels.  相似文献   

7.
Mitotic chromosome segregation is orchestrated by the dynamic interaction of spindle microtubules with the kinetochores. During chromosome alignment, kinetochore-bound microtubules undergo dynamic cycles between growth and shrinkage, leading to an oscillatory movement of chromosomes along the spindle axis. Although kinetochore protein CENP-H serves as a molecular control of kinetochore-microtubule dynamics, the mechanistic link between CENP-H and kinetochore microtubules (kMT) has remained less characterized. Here, we show that CSPP1 is a kinetochore protein essential for accurate chromosome movements in mitosis. CSPP1 binds to CENP-H in vitro and in vivo. Suppression of CSPP1 perturbs proper mitotic progression and compromises the satisfaction of spindle assembly checkpoint. In addition, chromosome oscillation is greatly attenuated in CSPP1-depleted cells, similar to what was observed in the CENP-H-depleted cells. Importantly, CSPP1 depletion enhances velocity of kinetochore movement, and overexpression of CSPP1 decreases the speed, suggesting that CSPP1 promotes kMT stability during cell division. Specific perturbation of CENP-H/CSPP1 interaction using a membrane-permeable competing peptide resulted in a transient mitotic arrest and chromosome segregation defect. Based on these findings, we propose that CSPP1 cooperates with CENP-H on kinetochores to serve as a novel regulator of kMT dynamics for accurate chromosome segregation.  相似文献   

8.

Purpose

The aim of this study was to evaluate a human meibomian gland epithelial cell line (HMGEC) as a model for meibomian gland (patho)physiology in vitro.

Methods

HMGEC were cultured in the absence or presence of serum. Sudan III lipid staining, ultrastructural analysis and lipidomic analyses were performed. Impedance sensing, desmoplakin 1/2 mRNA and cytokeratin (CK) 1, 5, 6, 14 levels were evaluated. Serum containing medium supplemented with higher serum, glucose, an omega-3 lipid cocktail, eicosapentaenoic acid or sebomed medium were investigated for lipid accumulation and ultrastructural morphology.

Results

Lipid droplet accumulation in HMGEC was induced by serum containing media after 1 day, but decreased over time. Cultivation in serum induced desmosome and cytokeratin filament formation. Desmoplakin 1/2 gene levels were significantly upregulated after 1d of serum treatment. Furthermore, the normalized impedance increased significantly. Lipidome analysis revealed high levels of phospholipids (over 50%), but very low levels of wax ester and cholesteryl esters (under 1%). Stimulation with eicosapentaenoic acid increased lipid accumulation after one day.

Conclusion

Serum treatment of HMGEC caused lipid droplet formation to some extent but also induced keratinization. The cells did not produce typical meibum lipids under these growth conditions. HMGEC are well suited to study (hyper)keratinization processes of meibomian gland epithelial cells in vitro.  相似文献   

9.
Interleukin-1 receptor antagonist (IL-1Ra) is an IL-1 family member, which binds to IL-1 receptors but does not induce any intracellular signaling. We addressed whether IL-1Ra has a novel function in regulation of the extracellular matrix or adhesion molecules. Polymerase chain reaction array analysis demonstrated a ~5-fold increase in matrix metalloproteinase 13 (MMP-13) mRNA expression of IL-1Ra siRNA-transfected Ca9-22 human oral squamous epithelial carcinoma cells compared with the control. In fact, MMP-13 mRNA and protein expression as well as its activity in IL-1Ra siRNA-transfected Ca9-22 cell lines were significantly higher than those in the control. IL-1Ra siRNA treatment resulted in strong elevation of MMP-13 expression, whereas addition of rhIL-1Ra (40 ng/ml) suppressed MMP-13 expression, suggesting that IL-1Ra had a specific effect on MMP-13 induction. IL-1Ra siRNA could potently suppress IL-1α. No significant difference was found between the MMP-13 mRNA expression of IL-1Ra siRNA-transfected cells and those treated with anti-IL-1α or anti-IL-1β antibodies. These results suggested that continuous supply of IL-1 had no effect on the induction of MMP-13 by IL-1Ra siRNA. Histopathological investigation of MMP-13 in periodontal tissue showed specific localization in the junctional epithelial cells of IL-1Ra knockout (KO) mice. Furthermore, infection with Aggregatibacter actinomycetemcomitans to establish an experimental periodontitis model resulted in predominant localization of MMP-13 along apical junctional epithelial cells. Laminin-5, which is degraded by MMP-13, was found in the internal basal lamina of wild-type mice, whereas the internal basal lamina of IL-1Ra KO mice did not show obvious laminin-5 localization. In particular, laminin-5 localization almost disappeared in the internal basal lamina of IL-1Ra KO mice infected with A. actinomycetemcomitans, suggesting that the suppression of IL-1Ra resulted in strong induction of MMP-13 that degraded laminin-5. In conclusion, IL-1Ra is associated with MMP-13 expression and has a novel function in such regulation without interference of the IL-1 signaling cascade.  相似文献   

10.
The dental epithelium and extracellular matrix interact to ensure that cell growth and differentiation lead to the formation of teeth of appropriate size and quality. To determine the role of fibronectin in differentiation of the dental epithelium and tooth formation, we analyzed its expression in developing incisors. Fibronectin mRNA was expressed during the presecretory stage in developing dental epithelium, decreased in the secretory and early maturation stages, and then reappeared during the late maturation stage. The binding of dental epithelial cells derived from postnatal day-1 molars to a fibronectin-coated dish was inhibited by the RGD but not RAD peptide, and by a β1 integrin-neutralizing antibody, suggesting that fibronectin-β1 integrin interactions contribute to dental epithelial-cell binding. Because fibronectin and β1 integrin are highly expressed in the dental mesenchyme, it is difficult to determine precisely how their interactions influence dental epithelial differentiation in vivo. Therefore, we analyzed β1 integrin conditional knockout mice (Intβ1lox-/lox-/K14-Cre) and found that they exhibited partial enamel hypoplasia, and delayed eruption of molars and differentiation of ameloblasts, but not of odontoblasts. Furthermore, a cyst-like structure was observed during late ameloblast maturation. Dental epithelial cells from knockout mice did not bind to fibronectin, and induction of ameloblastin expression in these cells by neurotrophic factor-4 was inhibited by treatment with RGD peptide or a fibronectin siRNA, suggesting that the epithelial interaction between fibronectin and β1 integrin is important for ameloblast differentiation and enamel formation.  相似文献   

11.
Coronary vessel development requires transfer of mesothelial cells to the heart surface to form the epicardium where some cells subsequently undergo epithelial-mesenchymal transformation (EMT) and invade the subepicardial matrix. Tgfbr3−/− mice die due to failed coronary vessel formation associated with decreased epicardial cell invasion but the mediators downstream of TGFβR3 are not well described. TGFβR3-dependent endocardial EMT stimulated by either TGFβ2 or BMP-2 requires activation of the Par6/Smurf1/RhoA 1pathway where Activin Receptor Like Kinase (ALK5) signals Par6 to act downstream of TGFβ to recruit Smurf1 to target RhoA for degradation to regulate apical-basal polarity and tight junction dissolution. Here we asked if this pathway was operant in epicardial cells and if TGFβR3 was required to access this pathway. Targeting of ALK5 in Tgfbr3+/+ cells inhibited loss of epithelial character and invasion. Overexpression of wild-type (wt) Par6, but not dominant negative (dn) Par6, induced EMT and invasion while targeting Par6 by siRNA inhibited EMT and invasion. Overexpression of Smurf1 and dnRhoA induced loss of epithelial character and invasion. Targeting of Smurf1 by siRNA or overexpression of constitutively active (ca) RhoA inhibited EMT and invasion. In Tgfbr3−/− epicardial cells which have a decreased ability to invade collagen gels in response to TGFβ2, overexpression of wtPar6, Smurf1, or dnRhoA had a diminished ability to induce invasion. Overexpression of TGFβR3 in Tgfbr3−/− cells, followed by siRNA targeting of Par6 or Smurf1, diminished the ability of TGFβR3 to rescue invasion demonstrating that the Par6/Smurf1/RhoA pathway is activated downstream of TGFβR3 in epicardial cells.  相似文献   

12.
Mutations in the WDR62 gene cause primary microcephaly, a pathological condition often associated with defective cell division that results in severe brain developmental defects. The precise function and localization of WDR62 within the mitotic spindle is, however, still under debate, as it has been proposed to act either at centrosomes or on the mitotic spindle. Here we explored the cellular functions of WDR62 in human epithelial cell lines using both short-term siRNA protein depletions and long-term CRISPR/Cas9 gene knockouts. We demonstrate that WDR62 localizes at spindle poles, promoting the recruitment of the microtubule-severing enzyme katanin. Depletion or loss of WDR62 stabilizes spindle microtubules due to insufficient microtubule minus-end depolymerization but does not affect plus-end microtubule dynamics. During chromosome segregation, WDR62 and katanin promote efficient poleward microtubule flux and favor the synchronicity of poleward movements in anaphase to prevent lagging chromosomes. We speculate that these lagging chromosomes might be linked to developmental defects in primary microcephaly.  相似文献   

13.
14.
Orbit, a Drosophila ortholog of microtubule plus-end enriched protein CLASP, plays an important role in many developmental processes involved in microtubule dynamics. Previous studies have shown that Orbit is required for asymmetric stem cell division and cystocyte divisions in germline cysts and for the development of microtubule networks that interconnect oocyte and nurse cells during oogenesis. Here, we examined the cellular localization of Orbit and its role in cyst formation during spermatogenesis. In male germline stem cells, distinct localization of Orbit was first observed on the spectrosome, which is a spherical precursor of the germline-specific cytoskeleton known as the fusome. In dividing stem cells and spermatogonia, Orbit was localized around centrosomes and on kinetochores and spindle microtubules. After cytokinesis, Orbit remained localized on ring canals, which are cytoplasmic bridges between the cells. Thereafter, it was found along fusomes, extending through the ring canal toward all spermatogonia in a cyst. Fusome localization of Orbit was not affected by microtubule depolymerization. Instead, our fluorescence resonance energy transfer experiments suggested that Orbit is closely associated with F-actin, which is abundantly found in fusomes. Surprisingly, F-actin depolymerization influenced neither fusome organization nor Orbit localization on the germline-specific cytoskeleton. We revealed that two conserved regions of Orbit are required for fusome localization. Using orbit hypomorphic mutants, we showed that the protein is required for ring canal formation and for fusome elongation mediated by the interaction of newly generated fusome plugs with the pre-existing fusome. The orbit mutation also disrupted ring canal clustering, which is essential for folding of the spermatogonia after cytokinesis. Orbit accumulates around centrosomes at the onset of spermatogonial mitosis and is required for the capture of one of the duplicated centrosomes onto the fusome. Moreover, Orbit is involved in the proper orientation of spindles towards fusomes during synchronous mitosis of spermatogonial cysts.  相似文献   

15.
Kinetochore attachment to the ends of dynamic microtubules is a conserved feature of mitotic spindle organization that is thought to be critical for proper chromosome segregation. Although kinetochores have been described to transition from lateral to end-on attachments, the phase of lateral attachment has been difficult to study in yeast due to its transient nature. We have previously described a kinetochore mutant, DAM1-765, which exhibits lateral attachments and misregulation of microtubule length. Here we show that the misregulation of microtubule length in DAM1-765 cells occurs despite localization of microtubule associated proteins Bik1, Stu2, Cin8 and Kip3 to microtubules. DAM1-765 kinetochores recruit the spindle checkpoint protein Bub1, however Bub1 localization to DAM1-765 kinetochores is not sufficient to cause a cell cycle arrest. Interestingly, the DAM1-765 mutation rescues the temperature sensitivity of a biorientationdeficient ipl1-321 mutant, and DAM1-765 chromosome loss rates are similar to wild-type cells. the spindle checkpoint in DAM1-765 cells responds properly to unattached kinetochores created by nocodazole treatment and loss of tension caused by a cohesin mutant. progression of DAM1-765 cells through mitosis therefore suggests that satisfaction of the checkpoint depends more highly on biorientation of sister kinetochores than on achievement of a specific interaction between kinetochores and microtubule plus ends.Key words: spindle assembly checkpoint, kinetochore-microtubule attachments, biorientation, DAM1-765  相似文献   

16.
Plant cortical microtubule arrays determine the cell wall deposition pattern and proper cell shape and function. Although various microtubule-associated proteins regulate the cortical microtubule array, the mechanisms underlying marked rearrangement of cortical microtubules during xylem differentiation are not fully understood. Here, we show that local Rho of Plant (ROP) GTPase signaling targets an Arabidopsis thaliana kinesin-13 protein, Kinesin-13A, to cortical microtubules to establish distinct patterns of secondary cell wall formation in xylem cells. Kinesin-13A was preferentially localized with cortical microtubules in secondary cell wall pits, areas where cortical microtubules are depolymerized to prevent cell wall deposition. This localization of Kinesin-13A required the presence of the activated ROP GTPase, MICROTUBULE DEPLETION DOMAIN1 (MIDD1) protein, and cortical microtubules. Knockdown of Kinesin-13A resulted in the formation of smaller secondary wall pits, while overexpression of Kinesin-13A enlarged their surface area. Kinesin-13A alone could depolymerize microtubules in vitro; however, both MIDD1 and Kinesin-13A were required for the depolymerization of cortical microtubules in vivo. These results indicate that Kinesin-13A regulates the formation of secondary wall pits by promoting cortical microtubule depolymerization via the ROP-MIDD1 pathway.  相似文献   

17.
Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, a tumor suppressor) is down-regulated by the oncogenic signals and hypoxia, but the biological function of RECK in early tumorigenic hyperplastic phenotypes is largely unknown. Knockdown of RECK by small interfering RNA (siRECK) or hypoxia significantly promoted cell proliferation in various normal epithelial cells. Hypoxia as well as knockdown of RECK by siRNA increased the cell cycle progression, the levels of cyclin D1 and c-Myc, and the phosphorylation of Rb protein (p-pRb), but decreased the expression of p21cip1, p27kip1, and p16ink4A. HIF-2α was upregulated by knockdown of RECK, indicating HIF-2α is a downstream target of RECK. As knockdown of RECK induced the activation of epidermal growth factor receptor (EGFR) and treatment of an EGFR kinase inhibitor, gefitinib, suppressed HIF-2α expression induced by the silencing of RECK, we can suggest that the RECK silenicng-EGFR-HIF-2α axis might be a key molecular mechanism to induce hyperplastic phenotype of epithelial cells. It was also found that shRNA of RECK induced larger and more numerous colonies than control cells in an anchorage-independent colony formation assay. Using a xenograft assay, epithelial cells with stably transfected with shRNA of RECK formed a solid mass earlier and larger than those with control cells in nude mice. In conclusion, the suppression of RECK may promote the development of early tumorigenic hyperplastic characteristics in hypoxic stress.  相似文献   

18.
19.
Acute lung injury is characterized by injury to the lung epithelium that leads to impaired resolution of pulmonary edema and also facilitates accumulation of protein-rich edema fluid and inflammatory cells in the distal airspaces of the lung. Recent in vivo and in vitro studies suggest that mesenchymal stem cells (MSC) may have therapeutic value for the treatment of acute lung injury. Here we tested the ability of human allogeneic mesenchymal stem cells to restore epithelial permeability to protein across primary cultures of polarized human alveolar epithelial type II cells after an inflammatory insult. Alveolar epithelial type II cells were grown on a Transwell plate with an air-liquid interface and injured by cytomix, a combination of IL-1β, TNFα, and IFNγ. Protein permeability measured by 131I-labeled albumin flux was increased by 5-fold over 24 h after cytokine-induced injury. Co-culture of human MSC restored type II cell epithelial permeability to protein to control levels. Using siRNA knockdown of potential paracrine soluble factors, we found that angiopoietin-1 secretion was responsible for this beneficial effect in part by preventing actin stress fiber formation and claudin 18 disorganization through suppression of NFκB activity. This study provides novel evidence for a beneficial effect of MSC on alveolar epithelial permeability to protein.  相似文献   

20.
Xklp2 is a plus end–directed Xenopus kinesin-like protein localized at spindle poles and required for centrosome separation during spindle assembly in Xenopus egg extracts. A glutathione-S-transferase fusion protein containing the COOH-terminal domain of Xklp2 (GST-Xklp2-Tail) was previously found to localize to spindle poles (Boleti, H., E. Karsenti, and I. Vernos. 1996. Cell. 84:49–59). Now, we have examined the mechanism of localization of GST-Xklp2-Tail. Immunofluorescence and electron microscopy showed that Xklp2 and GST-Xklp2-Tail localize specifically to the minus ends of spindle pole and aster microtubules in mitotic, but not in interphase, Xenopus egg extracts. We found that dimerization and a COOH-terminal leucine zipper are required for this localization: a single point mutation in the leucine zipper prevented targeting. The mechanism of localization is complex and two additional factors in mitotic egg extracts are required for the targeting of GST-Xklp2-Tail to microtubule minus ends: (a) a novel 100-kD microtubule-associated protein that we named TPX2 (Targeting protein for Xklp2) that mediates the binding of GST-Xklp2-Tail to microtubules and (b) the dynein–dynactin complex that is required for the accumulation of GST-Xklp2-Tail at microtubule minus ends. We propose two molecular mechanisms that could account for the localization of Xklp2 to microtubule minus ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号