首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
2.
3.
4.
Arsenic is a ubiquitous contaminant and a toxic metalloid which presents two main redox states in nature: arsenite [AsIII] and arsenate [AsV]. Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by the arsBHC operon and two additional arsenate reductases encoded by the arsI1 and arsI2 genes. Here we describe the genome-wide responses to the presence of arsenate and arsenite in wild type and mutants in the arsenic resistance system. Both forms of arsenic produced similar responses in the wild type strain, including induction of several stress related genes and repression of energy generation processes. These responses were transient in the wild type strain but maintained in time in an arsB mutant strain, which lacks the arsenite transporter. In contrast, the responses observed in a strain lacking all arsenate reductases were somewhat different and included lower induction of genes involved in metal homeostasis and Fe-S cluster biogenesis, suggesting that these two processes are targeted by arsenite in the wild type strain. Finally, analysis of the arsR mutant strain revealed that ArsR seems to only control 5 genes in the genome. Furthermore, the arsR mutant strain exhibited hypersentivity to nickel, copper and cadmium and this phenotype was suppressed by mutation in arsB but not in arsC gene suggesting that overexpression of arsB is detrimental in the presence of these metals in the media.  相似文献   

5.
6.
7.
Thiomonas arsenitoxydans is an acidophilic and facultatively autotrophic bacterium that can grow by oxidizing arsenite to arsenate. A comparative genomic analysis showed that the T. arsenitoxydans aioBA cluster encoding the two subunits of arsenite oxidase is distinct from the other clusters, with two specific genes encoding a cytochrome c and a metalloregulator belonging to the ArsR/SmtB family. These genes are cotranscribed with aioBA, suggesting that these cytochromes c are involved in arsenite oxidation and that this operon is controlled by the metalloregulator. The growth of T. arsenitoxydans in the presence of thiosulfate and arsenite, or arsenate, is biphasic. Real-time PCR experiments showed that the operon is transcribed during the second growth phase in the presence of arsenite or arsenate, whereas antimonite had no effect. These results suggest that the expression of the aioBA operon of T. arsenitoxydans is regulated by the electron donor present in the medium, i.e., is induced in the presence of arsenic but is repressed by more energetic substrates. Our data indicate that the genetic organization and regulation of the aioBA operon of T. arsenitoxydans differ from those of the other arsenite oxidizers.  相似文献   

8.
9.
10.
11.
The ars operon of resistance plasmid R773 encodes an anion-translocating ATPase which catalyzes extrusion of the oxyanions arsenite, antimonite, and arsenate, thus providing resistance to the toxic compounds. Although both arsenite and arsenate contain arsenic, they have different chemical properties. In the absence of the arsC gene the pump transports arsenite and antimonite, oxyanions with the +III oxidation state of arsenic or antimony. The complex neither transports nor provides resistance to arsenate, the oxyanion of the +V oxidation state of arsenic. The arsC gene encodes a 16-kDa polypeptide, the ArsC protein, which alters the substrate specificity of the pump to allow for recognition and transport of the alternate substrate arsenate. The arsC gene was cloned behind a strong promoter and expressed at high levels. The ArsC protein was purified and crystallized.  相似文献   

12.
The role of programmed cell death in filamentous fungi is not well-understood, but is important due to the role of fungi in opportunistic infections. Plants, fungi and protozoa do not have caspase genes, but instead express the homologous proteins denoted metacaspases. To better understand the role of metacaspases in fungi we present an analysis of the sequences and activities of all five Type I metacaspases from Schizophyllum commune (ScMC), a mushroom-forming basiodmycete that undergoes sexual reproduction. The five Type I metacaspases of S. commune can be divided into two groups based on sequence similarity. Enzymes both with and without the N-terminal prodomain are active, but here we report on the constructs without the prodomains (Δpro). All five ScMCΔpro proteins show the highest enzymatic activity between pH 7 and 8 and require calcium for optimal activity. Optimal Ca2+ concentrations for ScMC1Δpro and ScMC2Δpro are 50 mM, while ScMC3, ScMC4Δpro and ScMC5Δpro activity is optimal around 5 mM calcium. All five S. commune metacaspases have similar substrate specificity. They are most active with Arg in the P1 position and inactive with Asp in the P1 position.  相似文献   

13.
14.
15.
The plasmid-determined arsenite and antimonite efflux ATPase of bacteria differs from other membrane transport ATPases, which are classified into several families (such as the F0F1-type H+-translocating ATP synthases, the related vacuolar H+-translocating ATPases, the P-type cation-translocating ATPases, and the superfamily which includes the periplasmic binding-protein-dependent systems in Gram-negative bacteria, the human multidrug resistance P-glycoprotein, and the cystic fibrosis transport regulator). The amino acid sequences of the components of the arsenic resistance system are not similar to known ATPase proteins. New findings with the arsenic resistance operons of bacterial plasmids suggest that instead of being an orphan the Ars system will now be the first recognized member of a new class of ATPases. Furthermore, fundamental questions of energy-coupling (ATP-driven or chemiosmotic) have recently been raised and the finding that the arsC gene product is a soluble enzyme that reduces arsenate to arsenite changes the previous picture of the functioning of this widespread bacterial system.  相似文献   

16.
17.
Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment''s total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the “Rapid Annotation using the Subsystems Technology” server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics β-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population.  相似文献   

18.
19.
20.
All organisms are equipped with systems for detoxification of the metalloids arsenic and antimony. Here, we show that two parallel pathways involving the AP-1-like proteins Yap1p and Yap8p are required for acquisition of metalloid tolerance in the budding yeast S. cerevisiae. Yap8p is demonstrated to reside in the nucleus where it mediates enhanced expression of the arsenic detoxification genes ACR2 and ACR3. Using chromatin immunoprecipitation assays, we show that Yap8p is associated with the ACR3 promoter in untreated as well as arsenic-exposed cells. Like for Yap1p, specific cysteine residues are critical for Yap8p function. We further show that metalloid exposure triggers nuclear accumulation of Yap1p and stimulates expression of antioxidant genes. Yap1p mutants that are unable to accumulate in the nucleus during H(2)O(2) treatment showed nearly normal nuclear retention in response to metalloid exposure. Thus, our data are the first to demonstrate that Yap1p is being regulated by metalloid stress and to indicate that this activation of Yap1p operates in a manner distinct from stress caused by chemical oxidants. We conclude that Yap1p and Yap8p mediate tolerance by controlling separate subsets of detoxification genes and propose that the two AP-1-like proteins respond to metalloids through distinct mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号