首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
In response to genotoxic stress, which can be caused by environmental or endogenous genotoxic insults such as ionizing or ultraviolet radiation, various chemicals and reactive cellular metabolites, cell cycle checkpoints which slow down or arrest cell cycle progression can be activated, allowing the cell to repair or prevent the transmission of damaged or incompletely replicated chromosomes. Checkpoint machineries can also initiate pathways leading to apoptosis and the removal of a damaged cell from a tissue. The balance between cell cycle arrest and damage repair on one hand and the initiation of cell death, on the other hand, could determine if cellular or DNA damage is compatible with cell survival or requires cell elimination by apoptosis. Defects in these processes may lead to hypersensitivity to cellular stress, and susceptibility to DNA damage, genomic defects, and resistance to apoptosis, which characterize cancer cells. In this article, we have noted recent studies of DNA damage-dependent cell cycle checkpoints, which may be significant in preventing genomic instability.  相似文献   

12.
An appropriate response to genotoxic stress is essential for maintenance of genome stability and avoiding the passage to neoplasia. Nuclear factor kappaB (NF-kappaB) is activated as part of the DNA damage response and is thought to orchestrate a cell survival pathway, which, together with the activation of cell cycle checkpoints and DNA repair, allows the cell in cases of limited damage to restore a normal life cycle, unharmed. In this respect, NF-kappaB is one of the main factors accounting for chemotherapy resistance and as such impedes effective cancer treatment, representing an important drug target. Despite this high clinical relevance, signalling cascades leading to DNA damage-induced NF-kappaB activation are poorly understood and the use of highly divergent experimental set-ups in the past led to many controversies in the field. Therefore, in this review, we will try to summarize the current knowledge of distinct DNA damage-induced NF-kappaB signalling pathways.  相似文献   

13.
14.
15.
16.
All living cells utilize intricate DNA repair mechanisms to address numerous types of DNA lesions and to preserve genomic integrity, and pluripotent stem cells have specific needs due to their remarkable ability of self-renewal and differentiation into different functional cell types. Not surprisingly, human stem cells possess a highly efficient DNA repair network that becomes less efficient upon differentiation. Moreover, these cells also have an anaerobic metabolism, which reduces the mitochondria number and the likelihood of oxidative stress, which is highly related to genomic instability. If DNA lesions are not repaired, human stem cells easily undergo senescence, cell death or differentiation, as part of their DNA damage response, avoiding the propagation of stem cells carrying mutations and genomic alterations. Interestingly, cancer stem cells and typical stem cells share not only the differentiation potential but also their capacity to respond to DNA damage, with important implications for cancer therapy using genotoxic agents. On the other hand, the preservation of the adult stem cell pool, and the ability of cells to deal with DNA damage, is essential for normal development, reducing processes of neurodegeneration and premature aging, as one can observe on clinical phenotypes of many human genetic diseases with defects in DNA repair processes. Finally, several recent findings suggest that DNA repair also plays a fundamental role in maintaining the pluripotency and differentiation potential of embryonic stem cells, as well as that of induced pluripotent stem (iPS) cells. DNA repair processes also seem to be necessary for the reprogramming of human cells when iPS cells are produced. Thus, the understanding of how cultured pluripotent stem cells ensure the genetic stability are highly relevant for their safe therapeutic application, at the same time that cellular therapy is a hope for DNA repair deficient patients.  相似文献   

17.
18.
Mammalian cells are exposed to a wide variety of genotoxic stresses from both endogenous and exogenous sources. Cells typically exhibit cell cycle delays, or checkpoints, in response to acute genotoxic stress. Other types of cellular responses to DNA damage include apoptosis and probably increases in DNA repair levels. These response pathways are altered in cancer cells, by genetic alterations such as overexpression or mutation of oncogenes, or loss of tumor suppressor gene functions. As cancer chemotherapy relies primarily on the selective killing of cancer cells by DNA-damaging agents, genetic alterations affecting cellular stress response pathways may affect the outcome of cancer treatment.  相似文献   

19.
20.
Genomic instability: environmental invasion and the enemies within   总被引:7,自引:0,他引:7  
Philip C. Hanawalt   《Mutation research》1998,400(1-2):117-125
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号