首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Previous work demonstrated that a mixture of NH4Cl and KNO3 as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH4)2SO4 plus NaNO3, varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO2 addition or not. A. platensis was cultivated in mini-tanks at 30 °C, 156 μmol photons m−2 s−1, and starting cell concentration of 400 mg L−1, on a modified Schlösser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L−1, cell productivity of 179 mg L−1 d−1 and specific growth rate of 0.77 d−1) and satisfactory protein and lipid contents (around 30% each).  相似文献   

2.
Ultrasonic waves of high frequency (1.7 MHz) and low intensity (0.6 W cm–2) were employed to prevent cyanobacterial cells from growing fast and the effects of this growth inhibition were investigated. At least five minutes of ultrasonic irradiation was essential for effective inhibition. The growth rate of irradiated cells was reduced to 38.9% of the control during short-term culture. Longer exposure did not significantly enhance the inhibition. For a particular level of energy input, distributed ultrasonic exposure (more short intermittent exposures) was more effective in inhibiting growth than fewer, but longer exposures. For instance, the final biomass decreased to 30.1% of the control after ultrasonic irradiation for 4 minutes every 3 days, whereas it only decreased to 60% of the control with exposure for 12 minutes every 11 days. It is suggested that distributed ultrasonic irradiation is a practical method to prevent cyanobacterial cells from fast growth. A possible explanation for the inhibition is discussed in relation to cell structure, the absorption spectrum of intact cells, chlorophyll level and oxygen evolution.  相似文献   

3.
Spirulina platensis (= Arthrospira fusiformis) was isolated from Lake Chitu, a saline, alkaline lake in Ethiopia, where it forms an almost unialgal population. Optimum growth conditions were studied in a turbidostat. Cultures grown in modified Zarrouk's medium and exposed to a range of light intensities (20–500 µmol photons m–2s–1) showed a maximum specific growth rate (µmax) of 1.78 d–1. Quantum yield for growth (µ) was 3.8% at the optimum light for growth of 330 µmol photons m–2s–1, and ranged from 2.8 to 9.4%. With increase in irradiance, the chlorophyll a concentration decreased, and the carotenoids/chlorophyll a ratio increased by a factor of 2.4. The phosphorus to carbon ratio (P/C) showed some variation, while the nitrogen to carbon ratio (N/C) remained relatively constant, thus causing fluctuations in the N:P ratio (7–11) of cells. An optimum N:P ratio of about 7 was attained in cells growing at the optimum light for growth. Results from the continuous culture experiments agreed well with maximum values of photosynthetic efficiency given in the literature for natural populations of S. platensis in the soda lakes of East Africa, Lake Arenguade (Ethiopia), and Lake Simbi (Kenya).  相似文献   

4.

Background

Physcomitrella patens, a haploid dominant plant, is fast becoming a useful molecular genetics and bioinformatics tool due to its key phylogenetic position as a bryophyte in the post-genomic era. Genome sequences from select reference species were compared bioinformatically to Physcomitrella patens using reciprocal blasts with the InParanoid software package. A reference protein interaction database assembled using MySQL by compiling BioGrid, BIND, DIP, and Intact databases was queried for moss orthologs existing for both interacting partners. This method has been used to successfully predict interactions for a number of angiosperm plants.

Results

The first predicted protein-protein interactome for a bryophyte based on the interolog method contains 67,740 unique interactions from 5,695 different Physcomitrella patens proteins. Most conserved interactions among proteins were those associated with metabolic processes. Over-represented Gene Ontology categories are reported here.

Conclusion

Addition of moss, a plant representative 200 million years diverged from angiosperms to interactomic research greatly expands the possibility of conducting comparative analyses giving tremendous insight into network evolution of land plants. This work helps demonstrate the utility of “guilt-by-association” models for predicting protein interactions, providing provisional roadmaps that can be explored using experimental approaches. Included with this dataset is a method for characterizing subnetworks and investigating specific processes, such as the Calvin-Benson-Bassham cycle.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0524-1) contains supplementary material, which is available to authorized users.  相似文献   

5.
In 1997 a survey was conducted among the Kanembu whoharvest Arthrospira (Spirulina) from LakeKossorom in the Prefecture of Lac (Chad). Informationon the amount of Arthrospira harvested and thepreparation and use of dihé was obtained byinterviewing the women who daily gather around thelake for the harvesting. Dihé is obtained byfiltering and sun drying the algal biomass on thesandy shores of the lake. The semi-dried dihé is then cut into small squares and taken tothe villages, where the drying is completed on mats inthe sun. Dihé is mainly used to prepare la souce, a kind of fish or meat and vegetable broth.Part of the harvest is sold to local consumers or towholesalers, who trade the product in the markets ofMassakori, Massaquet and N'Djamena and also across theborder of the country. The local trading valueof the dihé annually harvested from LakeKossorom (about 40 t) amounts to more than US$100,000, which represents an important contributionto the economy of the area.  相似文献   

6.
An evaluation was made of the annual productivity of Spirulina (Arthrospira) and its ability to remove nutrients in outdoor raceways treating anaerobic effluents from pig wastewater under tropical conditions. The study was based at a pilot plant at La Mancha beach, State of Veracruz, Mexico. Batch or semi-continuous cultures were established at different seasons during four consecutive years. The protein content of the harvested biomass and the N and P removal from the ponds were also evaluated. Anaerobic effluents from digested pig waste were added in a proportion of 2% (v/v) to untreated sea-water diluted 1:4 with fresh water supplemented with 2 g L–1 sodium bicarbonate, at days 0, 3 and 5. A straight filament strain of Spirulina adapted to grow in this complex medium was utilized. A pH value 9.5 ± 0.2 was maintained. The productivity of batch cultures during summer 1998 was significantly more with a pond depth of 0.10 m than with a depth 0.065 m. The average productivity of semi-continuous cultures during summer 1999 was 14.4 g m–2 d–1 with a pond depth of 0.15 m and 15.1 g m–2 d–1 with a depth of 0.20 m. The average annual productivity for semi-continuous cultures operating with depths of 0.10 m for winter and 0.15 and 0.25 m for the rest of the year, was 11.8 g m–2 d–1. This is the highest value reported for a Spirulina cultivation system utilising sea-water. The average protein content of the semi-continuous cultures was 48.9% ash-free dry weight. NH4-N removal was in the range 84–96% and P removal in the range of 72–87%, depending on the depth of the culture and the season.  相似文献   

7.
8.

Background

Hemolymph plays key roles in honey bee molecule transport, immune defense, and in monitoring the physiological condition. There is a lack of knowledge regarding how the proteome achieves these biological missions for both the western and eastern honey bees (Apis mellifera and Apis cerana). A time-resolved proteome was compared using two-dimensional electrophoresis-based proteomics to reveal the mechanistic differences by analysis of hemolymph proteome changes between the worker bees of two bee species during the larval to pupal stages.

Results

The brood body weight of Apis mellifera was significantly heavier than that of Apis cerana at each developmental stage. Significantly, different protein expression patterns and metabolic pathways were observed in 74 proteins (166 spots) that were differentially abundant between the two bee species. The function of hemolymph in energy storage, odor communication, and antioxidation is of equal importance for the western and eastern bees, indicated by the enhanced expression of different protein species. However, stronger expression of protein folding, cytoskeletal and developmental proteins, and more highly activated energy producing pathways in western bees suggests that the different bee species have developed unique strategies to match their specific physiology using hemolymph to deliver nutrients and in immune defense.

Conclusions

Our disparate findings constitute a proof-of-concept of molecular details that the ecologically shaped different physiological conditions of different bee species match with the hemolymph proteome during the brood stage. This also provides a starting point for future research on the specific hemolymph proteins or pathways related to the differential phenotypes or physiology.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-563) contains supplementary material, which is available to authorized users.  相似文献   

9.
This study evaluates whether Spirulina, including its components such as phycocyanin, enhances or sustains immune functions by promoting immune competent-cell proliferation or differentiation. The effects of Spirulina of a hot-water extract (SpHW), phycocyanin (Phyc), and cell-wall component extract (SpCW) on proliferation of bone marrow cells and induction of colony-forming activity in mice were investigated. The Spirulina extracts, SpHW, Phyc, and SpCW, enhanced proliferation of bone-marrow cells and induced colony-forming activity in the spleen-cell culture supernatant. Granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-3 (IL-3) were detected in the culture supernatant of the spleen cells stimulated with the Spirulina extracts. Bone marrow-cell colony formation in soft-agar assay was also significantly induced by the blood samples and the culture supernatants of the spleen and Peyer's patch cells of the mice which ingested Spirulina extracts orally for 5 weeks in in vivo study. Ratios of neutrophils and lymphocytes in the peripheral blood and bone marrow, consequently, increased in the mice. Spirulina may have potential therapeutic benefits for improvement of weakened immune functions caused by, for example, the use of anticancer drugs.  相似文献   

10.
11.
Protein-protein interactions are operative at almost every level of cell structure and function as, for example, formation of sub-cellular organelles, packaging of chromatin, muscle contraction, signal transduction, and regulation of gene expression. Public databases of reported protein-protein interactions comprise hundreds of thousands interactions, and this number is steadily growing. Elucidating the implications of protein-protein interactions for the regulation of the underlying cellular or extra-cellular reaction network remains a great challenge for computational biochemistry. In this work, we have undertaken a systematic and comprehensive computational analysis of reported enzyme-enzyme interactions in the metabolic networks of the model organisms Escherichia coli and Saccharomyces cerevisiae. We grouped all enzyme pairs according to the topological distance that the catalyzed reactions have in the metabolic network and performed a statistical analysis of reported enzyme-enzyme interactions within these groups. We found a higher frequency of reported enzyme-enzyme interactions within the group of enzymes catalyzing reactions that are adjacent in the network, i.e. sharing at least one metabolite. As some of these interacting enzymes have already been implicated in metabolic channeling our analysis may provide a useful screening for candidates of this phenomenon. To check for a possible regulatory role of interactions between enzymes catalyzing non-neighboring reactions, we determined potentially regulatory enzymes using connectivity in the network and absolute change of Gibbs free energy. Indeed a higher portion of reported interactions pertain to such potentially regulatory enzymes.  相似文献   

12.
13.
Hippophae salicifolia (HS) and Hippophae rhamnoides turkestanica (HRT) are abundantly found species of Hippophae in Himalayan region of India. As these plants thrive under extreme climatic conditions, it is suspected that these plants must have a unique adaptogenic property against high-altitude stress. To keeping these views in our mind, the present study was planned to evaluate the mechanism of action of aqueous extract of HS and aqueous extract of HRT against multiple stress [cold-hypoxia-restraint (C-H-R)] for their adaptogenic activity. The present study reported the adaptogenic activity of HS in facilitating tolerance to multiple stress, CHR in rats. Pre-treatment with aqueous extract of HS significantly attenuated reactive oxygen species (ROS) production, protein oxidation, and lipid peroxidation and also showed role in maintaining antioxidant status as similar to control rats. Since protein oxidation was decreased by pre-treatment of HS, protein homeostasis was also sustained by regulation of heat shock proteins (HSP70 and HSP60). Interestingly, heme oxygenase-1 (HO-1), Vascular Endothelial Growth Factor (VEGF), and nitric oxide (NO) level was also increased in HS pre-treated rats depicted its adaptogenic activity against multiple stress, CHR. Conclusively, aqueous extract of HS could use an adaptogen for high altitude-associated multiple stress (CHR).  相似文献   

14.

Background

Sphingobium spp. are efficient degraders of a wide range of chlorinated and aromatic hydrocarbons. In particular, strains which harbour the lin pathway genes mediating the degradation of hexachlorocyclohexane (HCH) isomers are of interest due to the widespread persistence of this contaminant. Here, we examined the evolution and diversification of the lin pathway under the selective pressure of HCH, by comparing the draft genomes of six newly-sequenced Sphingobium spp. (strains LL03, DS20, IP26, HDIPO4, P25 and RL3) isolated from HCH dumpsites, with three existing genomes (S. indicum B90A, S. japonicum UT26S and Sphingobium sp. SYK6).

Results

Efficient HCH degraders phylogenetically clustered in a closely related group comprising of UT26S, B90A, HDIPO4 and IP26, where HDIPO4 and IP26 were classified as subspecies with ANI value >98%. Less than 10% of the total gene content was shared among all nine strains, but among the eight HCH-associated strains, that is all except SYK6, the shared gene content jumped to nearly 25%. Genes associated with nitrogen stress response and two-component systems were found to be enriched. The strains also housed many xenobiotic degradation pathways other than HCH, despite the absence of these xenobiotics from isolation sources. Additionally, these strains, although non-motile, but posses flagellar assembly genes. While strains HDIPO4 and IP26 contained the complete set of lin genes, DS20 was entirely devoid of lin genes (except linKLMN) whereas, LL03, P25 and RL3 were identified as lin deficient strains, as they housed incomplete lin pathways. Further, in HDIPO4, linA was found as a hybrid of two natural variants i.e., linA1 and linA2 known for their different enantioselectivity.

Conclusion

The bacteria isolated from HCH dumpsites provide a natural testing ground to study variations in the lin system and their effects on degradation efficacy. Further, the diversity in the lin gene sequences and copy number, their arrangement with respect to IS6100 and evidence for potential plasmid content elucidate possible evolutionary acquisition mechanisms for this pathway. This study further opens the horizon for selection of bacterial strains for inclusion in an HCH bioremediation consortium and suggests that HDIPO4, IP26 and B90A would be appropriate candidates for inclusion.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1014) contains supplementary material, which is available to authorized users.  相似文献   

15.
To follow the anaerobic degradation of organic matter in tidal-flat sediments, a stimulation experiment with 13C-labeled Spirulina biomass (130 mg per 21 g sediment slurry) was conducted over a period of 24 days. A combination of microcalorimetry to record process kinetics, chemical analyses of fermentation products and RNA-based stable-isotope probing (SIP) to follow community changes was applied. Different degradation phases could be identified by microcalorimetry: Within 2 days, heat output reached its maximum (55 μW), while primary fermentation products were formed (in μmol) as follows: acetate 440, ethanol 195, butyrate 128, propionate 112, H2 127 and smaller amounts of valerate, propanol and butanol. Sulfate was depleted within 7 days. Thereafter, methanogenesis was observed and secondary fermentation proceeded. H2 and alcohols disappeared completely, whereas fatty acids decreased in concentration. Three main degraders were identified by RNA-based SIP and denaturant gradient gel electrophoresis. After 12 h, two phylotypes clearly enriched in 13C: (i) Psychrilyobacter atlanticus, a fermenter known to produce hydrogen and acetate and (ii) bacteria distantly related to Propionigenium. A Cytophaga-related bacterium was highly abundant after day 3. Sulfate reduction appeared to be performed by incompletely oxidizing species, as only sulfate-reducing bacteria related to Desulfovibrio were labeled as long as sulfate was available.  相似文献   

16.
Mantle cell lymphomas (MCL), characterized by the t(11;14)(q13;q32), frequently carry secondary genetic alterations such as deletions in chromosome 17p involving the TP53 locus. Given that the association between TP53-deletions and concurrent mutations of the remaining allele is weak and based on our recent report that the Hypermethylated in Cancer 1 (HIC1) gene, that is located telomeric to the TP53 gene, may be targeted by deletions in 17p in diffuse large B-cell lymphoma (DLBCL), we investigated whether HIC1 inactivations might also occur in MCL. Monoallelic deletions of the TP53 locus were detected in 18 out of 59 MCL (31%), while overexpression of p53 protein occurred in only 8 out of 18 of these MCL (44%). In TP53-deleted MCL, the HIC1 gene locus was co-deleted in 11 out of 18 cases (61%). However, neither TP53 nor HIC1 deletions did affect survival of MCL patients. In most analyzed cases, no hypermethylation of the HIC1 exon 1A promoter was observed (17 out of 20, 85%). However, in MCL cell lines without HIC1-hypermethylation, the mRNA expression levels of HIC1 were nevertheless significantly reduced, when compared to reactive lymph node specimens, pointing to the occurrence of mechanisms other than epigenetic or genetic events for the inactivation of HIC1 in this entity.  相似文献   

17.
Previously, we identified a novel herbivore elicitor-regulated protein in Nicotiana attenuata (NaHER1) that is required to suppress abscisic acid (ABA) catabolism during herbivore attack and activate a full defense response against herbivores. ABA, in addition to its newly defined role in defense activation, mainly controls seed germination and stomatal function of land plants. Here we show that N. attenuata seeds silenced in the expression of NaHER1 by RNA interference (irHER1) accumulated less ABA during germination, and germinated faster on ABA-containing media compared to WT. Curiously, epidermal cells of irHER1 plants were wrinkled, possibly due to the previously demonstrated increase in transpiration of irHER1 plants that may affect turgor and cause wrinkling of the cells. We conclude that NaHER1 is a highly pleiotropic regulator of ABA responses in N. attenuata plants.  相似文献   

18.
Whiteflies (Hemiptera, Aleyrodidae) are represented by more than 1,500 herbivorous species around the world. Some of them are notorious pests of cassava (Manihot esculenta), a primary food crop in the tropics. Particularly destructive is a complex of Neotropical cassava whiteflies whose distribution remains restricted to their native range. Despite their importance, neither their distribution, nor that of their associated parasitoids, is well documented. This paper therefore reports observational and specimen-based occurrence records of Neotropical cassava whiteflies and their associated parasitoids and hyperparasitoids. The dataset consists of 1,311 distribution records documented by the International Center for Tropical Agriculture (CIAT) between 1975 and 2012. The specimens are held at CIAT’s Arthropod Reference Collection (CIATARC, Cali, Colombia). Eleven species of whiteflies, 14 species of parasitoids and one species of hyperparasitoids are reported. Approximately 66% of the whitefly records belong to Aleurotrachelus socialis and 16% to Bemisia tuberculata. The parasitoids with most records are Encarsia hispida, Amitus macgowni and Encarsia bellottii for Aleurotrachelus socialis; and Encarsia sophia for Bemisia tuberculata. The complete dataset is available in Darwin Core Archive format via the Global Biodiversity Information Facility (GBIF).  相似文献   

19.
The alteration of the degree of unsaturated fatty acids in membrane lipids has been shown to be a key mechanism in the tolerance to temperature stress of living organisms. The step that most influences the physiology of membranes has been proposed to be the amount of di-unsaturated fatty acids in membrane lipids. In this study, we found that the desaturation of fatty acid to yield the di-unsaturated fatty acid 18:2(9,12), in Spirulina platensis strain C1, was not regulated by temperature. As shown by the fatty acid composition and gene expression patterns, the levels of 18:1(9) and 18:2(9,12) remained almost constant either when the cells were grown at 35 degrees C (normal growth temperature) or 22 and 40 degrees C. The expression of desC (Delta9) and desA (Delta12) genes, which are responsible for the introduction of first and second double bonds into fatty acids, respectively, was not affected by the temperature shift from 35 to 22 degrees C or to 40 degrees C. Only the expression and mRNA stability of the desD gene (Delta6) that is responsible for the introduction of a third double bond into fatty acids were enhanced by a temperature shift from 35 to 22 degrees C, but not the shift from 35 to 40 degrees C. The increase in the level of desD mRNA elevated the desaturation of fatty acid from 18:2(9,12) to 18:3(6,9,12) at 22 degrees C. However, the increased level of 18:3(6,9,12) was observed after 36 h of incubation at 22 degrees C, indicating a slow response to temperature of fatty acid desaturation in this cyanobacterium. These findings suggest that the desaturation of fatty acids might not be a key mechanism in the response to the temperature change of S. platensis strain C1.  相似文献   

20.
Pseudomonas fluorescens GcM5-1A, isolated from the pine wood nematode (PWN), Bursaphelenchus xylophilus, was cultured in Luria Broth medium (LB). The clarified culture was extracted with ethyl acetate, and two dipeptides were purified from the extract. The chemical structures of 1 and 2 were identified as cyclo(-Pro-Val-)and cyclo(-Pro-Tyr-), respectively, by MS, 1H NMR, 13C NMR,1H-1H COSY, 1H -13C COSY spectra. Bioassay results showed that the two compounds were toxic to both suspension cells and seedlings of Pinus thunbergii, which may offer some clues to research the mechanism of pine wilt disease caused by PWN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号