首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asymmetric dimer formation of epidermal growth factor receptor (EGFR) is crucial for EGF-induced receptor activation. Even though autophosphorylation is important for activation, its role remains elusive in the context of regulating dimers. In this study, employing overlapping time series analysis to raster image correlation spectroscopy (RICS), we observed time-dependent transient dynamics of EGFR dimerization and found EGFR kinase activity to be essential for dimerization. As a result of which, we hypothesized that phosphorylation could influence dimerization. Evaluating this point, we observed that one of the tyrosine residues (Y954) located in the C-terminal lobe of the activator kinase domain was important to potentiate dimerization. Functional imaging to monitor Ca2+ and ERK signals revealed a significant role of Y954 in influencing downstream signaling cascade. Crucial for stabilization of EGFR asymmetric dimer is a “latch” formed between kinase domains of the binding partners. Because Y954 is positioned adjacent to the latch binding region on the kinase domain, we propose that phosphorylation strengthened the latch interaction. On the contrary, we identified that threonine phosphorylation (T669) in the latch domain negatively regulated EGFR dimerization and the downstream signals. Overall, we have delineated the previously anonymous role of phosphorylation at the latch interface of kinase domains in regulating EGFR dimerization.  相似文献   

2.
Her4 (ErbB-4) and Her2/neu (ErbB-2) are receptor-tyrosine kinases belonging to the epidermal growth factor receptor (EGFR) family. Crystal structures of EGFR and Her4 kinase domains demonstrate kinase dimerization and activation through an allosteric mechanism. The kinase domains form an asymmetric dimer, where the C-lobe surface of one monomer contacts the N-lobe of the other monomer. EGFR kinase dimerization and activation in vitro was previously reported using a nickel-chelating lipid-liposome system, and we now apply this system to all other members of the EGFR family. Polyhistidine-tagged Her4, Her2/neu, and Her3 kinase domains are bound to these nickel-liposomes and are brought to high local concentration, mimicking what happens to full-length receptors in vivo following ligand binding. Addition of nickel-liposomes to Her4 kinase domain results in 40-fold activation in kinase activity and marked enhancement of C-terminal tail autophosphorylation. Activation of Her4 shows a sigmoidal dependence on kinase concentration, consistent with a cooperative process requiring kinase dimerization. Her2/neu kinase activity is also activated by nickel-liposomes, and is increased further by heterodimerization with Her3 or Her4. The ability of Her3 and Her4 to heterodimerize and activate other family members is studied in vitro. Her3 kinase domain readily activates Her2/neu but is a poor activator of Her4, which differs from the prediction made by the asymmetric dimer model. Mutation of Her3 residues 952ENI954 to the corresponding sequence in Her4 enhanced the ability of Her3 to activate Her4, demonstrating that sequence differences on the C-lobe surface influence the heterodimerization and activation of ErbB kinase domains.  相似文献   

3.
Zhang X  Gureasko J  Shen K  Cole PA  Kuriyan J 《Cell》2006,125(6):1137-1149
The mechanism by which the epidermal growth factor receptor (EGFR) is activated upon dimerization has eluded definition. We find that the EGFR kinase domain can be activated by increasing its local concentration or by mutating a leucine (L834R) in the activation loop, the phosphorylation of which is not required for activation. This suggests that the kinase domain is intrinsically autoinhibited, and an intermolecular interaction promotes its activation. Using further mutational analysis and crystallography we demonstrate that the autoinhibited conformation of the EGFR kinase domain resembles that of Src and cyclin-dependent kinases (CDKs). EGFR activation results from the formation of an asymmetric dimer in which the C-terminal lobe of one kinase domain plays a role analogous to that of cyclin in activated CDK/cyclin complexes. The CDK/cyclin-like complex formed by two kinase domains thus explains the activation of EGFR-family receptors by homo- or heterodimerization.  相似文献   

4.
Protein kinase R (PKR) functions in a plethora of cellular processes, including viral and cellular stress responses, by phosphorylating the translation initiation factor eIF2α. The minimum requirements for PKR function are homodimerization of its kinase and RNA-binding domains, and autophosphorylation at the residue Thr-446 in a flexible loop called the activation loop. We investigated the interdependence between dimerization and Thr-446 autophosphorylation using the yeast Saccharomyces cerevisiae model system. We showed that an engineered PKR that bypassed the need for Thr-446 autophosphorylation (PKRT446∼P-bypass mutant) could function without a key residue (Asp-266 or Tyr-323) that is essential for PKR dimerization, suggesting that dimerization precedes and stimulates activation loop autophosphorylation. We also showed that the PKRT446∼P-bypass mutant was able to phosphorylate eIF2α even without its RNA-binding domains. These two significant findings reveal that PKR dimerization and activation loop autophosphorylation are mutually exclusive yet interdependent processes. Also, we provide evidence that Thr-446 autophosphorylation during PKR activation occurs in a cis mechanism following dimerization.  相似文献   

5.
Many Ser/Thr protein kinases are activated by autophosphorylation, but the mechanism of this process has not been defined. We determined the crystal structure of a mutant of the Ser/Thr kinase domain (KD) of the mycobacterial sensor kinase PknB in complex with an ATP competitive inhibitor and discovered features consistent with an activation complex. The complex formed an asymmetric dimer, with the G helix and the ordered activation loop of one KD in contact with the G helix of the other. The activation loop of this putative ‘substrate’ KD was disordered, with the ends positioned at the entrance to the partner KD active site. Single amino‐acid substitutions in the G‐helix interface reduced activation‐loop phosphorylation, and multiple replacements abolished KD phosphorylation and kinase activation. Phosphorylation of an inactive mutant KD was reduced by G‐helix substitutions in both active and inactive KDs, as predicted by the idea that the asymmetric dimer mimics a trans‐autophosphorylation complex. These results support a model in which a structurally and functionally asymmetric, ‘front‐to‐front’ association mediates autophosphorylation of PknB and homologous kinases.  相似文献   

6.
To investigate the functions of key domains of the epidermal growth factor receptor (EGFR), various EGFR-derived peptide sequences were expressed in Escherichia coli as glutathione S-transferase (GST) fusion proteins. The purified fusion proteins (GST-TK0-8) were tested as substrates for the tyrosine kinase activities of the EGFR and c-src. Both the GST-TK4 fusion protein, which contains the major C-terminal tyrosine autophosphorylation sites of the EGFR, and GST-TK7, which contains the connecting sequence between the EGFR kinase domain and the C-terminal autophosphorylation domain, were strongly phosphorylated by the EGFR and c-src. Hence the candidate tyrosine phosphorylation sites present in the connecting sequences of the EGFR, as well as the known autophosphorylation sites of the EGFR, can be phosphorylated by the two tyrosine kinases. The protein GST-TK7 was phosphorylated by c-src with a KM of 5-10 microM, which indicated a potential interaction between the connecting segment of the EGFR and the c-src kinase. The GST fusion proteins were also used to map the sites recognized by two anti-EGFR monoclonal antibodies and a polyclonal serum raised against an EGFR tyrosine kinase domain fragment. The recognition site of one monoclonal antibody was determined to be in a short sequence surrounding tyr1068, a primary site of autophosphorylation in the C-terminal domain of the receptor. The anti-peptide polyclonal serum recognized only sequences in the GST-TK7 fusion protein, and hence binds to the connecting sequence between the kinase core and the C-terminal domain. These antibodies will therefore be useful reagents for studying the function of two key structural elements of the EGFR tyrosine kinase. The GST-TK fusion proteins should have many other applications in the study of EGFR catalysis and mitogenic signalling.  相似文献   

7.
8.
The Syk tyrosine kinase family plays an essential role in immunoreceptor tyrosine-based activation motif (ITAM) signaling. The binding of Syk to tyrosine-phosphorylated ITAM subunits of immunoreceptors, such as FcϵRI on mast cells, results in a conformational change, with an increase of enzymatic activity of Syk. This conformational change exposes the COOH-terminal tail of Syk, which has three conserved Tyr residues (Tyr-623, Tyr-624, and Tyr-625 of rat Syk). To understand the role of these residues in signaling, wild-type and mutant Syk with these three Tyr mutated to Phe was expressed in Syk-deficient mast cells. There was decreased FcϵRI-induced degranulation, nuclear factor for T cell activation and NFκB activation with the mutated Syk together with reduced phosphorylation of MAP kinases p38 and p42/44 ERK. In non-stimulated cells, the mutated Syk was more tyrosine phosphorylated predominantly as a result of autophosphorylation. In vitro, there was reduced binding of mutated Syk to phosphorylated ITAM due to this increased phosphorylation. This mutated Syk from non-stimulated cells had significantly reduced kinase activity toward an exogenous substrate, whereas its autophosphorylation capacity was not affected. However, the kinase activity and the autophosphorylation capacity of this mutated Syk were dramatically decreased when the protein was dephosphorylated before the in vitro kinase reaction. Furthermore, mutation of these tyrosines in the COOH-terminal region of Syk transforms it to an enzyme, similar to its homolog ZAP-70, which depends on other tyrosine kinases for optimal activation. In testing Syk mutated singly at each one of the tyrosines, Tyr-624 but especially Tyr-625 had the major role in these reactions. Therefore, these results indicate that these tyrosines in the tail region play a critical role in regulating the kinase activity and function of Syk.  相似文献   

9.
Recombinant expression of a chimeric EGFR/ErbB-3 receptor in NIH 3T3 fibroblasts allowed us to investigate cytoplasmic events associated with ErbB-3 signal transduction upon ligand activation. An EGFR/ErbB-3 chimera was expressed on the surface of NIH 3T3 transfectants as two classes of receptors possessing epidermal growth factor (EGF) binding affinities comparable to those of the wild-type EGF receptor (EGFR). EGF induced autophosphorylation in vivo of the chimeric receptor and DNA synthesis of EGFR/ErbB-3 transfectants with a dose response similar to that of EGFR transfectants. However, the ErbB-3 and EGFR cytoplasmic domains exhibited striking differences in their interactions with several known tyrosine kinase substrates. We demonstrated strong association of phosphatidylinositol 3-kinase activity with the chimeric receptor upon ligand activation comparable in efficiency with that of the platelet-derived growth factor receptor, while the EGFR exhibited a 10- to 20-fold-lower efficiency in phosphatidylinositol 3-kinase recruitment. By contrast, both phospholipase C gamma and GTPase-activating protein failed to associate with or be phosphorylated by the ErbB-3 cytoplasmic domain under conditions in which they coupled with the EGFR. In addition, though certain signal transmitters, including Shc and GRB2, were recruited by both kinases, EGFR and ErbB-3 elicited tyrosine phosphorylation of distinct sets of intracellular substrates. Thus, our findings show that ligand activation of the ErbB-3 kinase triggers a cytoplasmic signaling pathway that hitherto is unique within this receptor subfamily.  相似文献   

10.
Although Mycobacterium tuberculosis (M. tb) comprises 11 serine/threonine protein kinases, the mechanisms of regulation of these kinases and the nature of their endogenous substrates remain largely unknown. Herein, we characterized the M. tb kinase PknL by demonstrating that it expresses autophosphorylation activity and phosphorylates Rv2175c. On-target dephosphorylation/MALDI-TOF for identification of phosphorylated peptides was used in combination with LC-ESI/MS/MS for localization of phosphorylation sites. By doing so, five phosphorylated threonine residues were identified in PknL. Among them, we showed that the activation loop phosphorylated residues Thr173 and Thr175 were essential for the autophosphorylation activity of PknL. Phosphorylation of the activation loop Thr173 residue is also required for optimal PknL-mediated phosphorylation of Rv2175c. Together, our results indicate that phosphorylation of the PknL activation loop Thr residues not only controls PknL kinase activity but is also required for recruitment and phosphorylation of its substrate. Rv2175c was found to be phosphorylated when overexpressed and purified from Mycobacterium smegmatis as 2-DE indicated the presence of different phosphorylated isoforms. Given the presence of the dcw gene cluster in the close vicinity of the pknL/Rv2175c locus, and its conservation in all mycobacterial species, we propose that PknL/Rv2175c may represent a functional pair in the regulation of mycobacterial cell division and cell envelope biosynthesis.  相似文献   

11.
The crystal structure of the kinase domain from the epidermal growth factor receptor (EGFRK) including forty amino acids from the carboxyl-terminal tail has been determined to 2.6-A resolution, both with and without an EGFRK-specific inhibitor currently in Phase III clinical trials as an anti-cancer agent, erlotinib (OSI-774, CP-358,774, Tarceva(TM)). The EGFR family members are distinguished from all other known receptor tyrosine kinases in possessing constitutive kinase activity without a phosphorylation event within their kinase domains. Despite its lack of phosphorylation, we find that the EGFRK activation loop adopts a conformation similar to that of the phosphorylated active form of the kinase domain from the insulin receptor. Surprisingly, key residues of a putative dimerization motif lying between the EGFRK domain and carboxyl-terminal substrate docking sites are found in close contact with the kinase domain. Significant intermolecular contacts involving the carboxyl-terminal tail are discussed with respect to receptor oligomerization.  相似文献   

12.
Regulation of p90RSK phosphorylation by SARS-CoV infection in Vero E6 cells   总被引:2,自引:0,他引:2  
The 90 kDa ribosomal S6 kinases (p90RSKs) are a family of broadly expressed serine/threonine kinases with two kinase domains activated by extracellular signal-regulated protein kinase in response to many growth factors. Our recent study demonstrated that severe acute respiratory syndrome (SARS)-coronavirus (CoV) infection of monkey kidney Vero E6 cells induces phosphorylation and dephosphorylation of signaling pathways, resulting in apoptosis. In the present study, we investigated the phosphorylation status of p90RSK, which is a well-known substrate of these signaling pathways, in SARS-CoV-infected cells. Vero E6 mainly expressed p90RSK1 and showed weak expression of p90RSK2. In the absence of viral infection, Ser221 in the N-terminal kinase domain was phosphorylated constitutively, whereas both Thr573 in the C-terminal kinase domain and Ser380 between the two kinase domains were not phosphorylated in confluent cells. Ser380, which has been reported to be involved in autophosphorylation by activation of the C-terminal kinase domain, was phosphorylated in confluent SARS-CoV-infected cells, and this phosphorylation was inhibited by , which is an inhibitor of p38 mitogen-activated protein kinases (MAPK). Phosphorylation of Thr573 was not upregulated in SARS-CoV-infected cells. Thus, in virus-infected cells, phosphorylation of Thr573 was not necessary to induce phosphorylation of Ser380. On the other hand, Both Thr573 and Ser380 were phosphorylated by treatment with epidermal growth factor (EGF) in the absence of p38 MAPK activation. Ser220 was constitutively phosphorylated despite infection. These results indicated that phosphorylation status of p90RSK by SARS-CoV infection is different from that by stimulation of EGF. This is the first detailed report regarding regulation of p90RSK phosphorylation by virus infection.  相似文献   

13.
Rhodopsin kinase (RK) is a second-messenger-independent protein kinase that is involved in deactivation of photolyzed rhodopsin (Rho*). We have developed a significantly improved method for isolation of RK based on the specific interactions of phosphorylated forms of the enzyme with heparin-Sepharose. Conversion of the dephosphorylated form of RK to the fully phosphorylated enzyme leads to specific elution of the kinase from the resin. Limited proteolysis of RK with endoproteinase Asp-N removes the phosphorylation sites. Peptides containing the autophosphorylation sites were isolated by reverse-phase high performance liquid chromatography and analyzed by Edman degradation and tandem mass spectrometry. The derived amino acid sequence of the peptide containing the major autophosphorylation site yielded the following sequence: DVGAFS488T489VKGVAFEK, where Ser488 and Thr489 are phosphorylated. Additionally, a minor autophosphorylation site was identified at Ser21. A 15-residue peptide (DVGAFSTVKGVAFEK) encompassing the major autophosphorylation site was synthesized and used for phosphorylation and inhibition studies. In contrast to many other protein kinases, the low catalytic activity of RK toward its autophosphorylation site peptide and the poor inhibitory properties of this peptide suggest unique properties of this member of the family of G protein-coupled receptor kinases.  相似文献   

14.
The protein tyrosine kinase ZAP-70 is implicated in the early steps of the T-cell antigen receptor (TCR) signaling. Binding of ZAP-70 to the phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) of the TCR zeta chain through its two src-homology 2 (SH2) domains results in its activation coupled to phosphorylation on multiple tyrosine residues, mediated by Src kinases including Lck as well as by autophosphorylation. The mechanism of ZAP-70 activation following receptor binding is still not completely understood. Here we investigated the effect of intramolecular interactions and autophosphorylation by following the kinetics of recombinant ZAP-70 activation in a spectrophotometric substrate phosphorylation assay. Under these conditions, we observed a lag phase of several minutes before full ZAP-70 activation, which was not observed using a truncated form lacking the first 254 residues, suggesting that it might be due to an intramolecular interaction involving the interdomain A and SH2 region. Accordingly, the lag phase could be reproduced by testing the truncated form in the presence of recombinant SH2 domains and was abolished by the addition of diphosphorylated ITAM peptide. Preincubation with ATP or phosphorylation by Lck also abolished the lag phase and resulted in a more active enzyme. The same results were obtained using a ZAP-70 mutant lacking the interdomain B tyrosines. These findings are consistent with a mechanism in which ZAP-70 phosphorylation/autophosphorylation on tyrosine(s) other than 292, 315, and 319, as well as engagement of the SH2 domains by the phosphorylated TCR, can induce a conformational change leading to accelerated enzyme kinetics and higher catalytic efficiency.  相似文献   

15.
p70 S6 kinase, a major insulin-mitogen-activated ribosomal S6 protein kinase in mammalian cells, is activated by phosphorylation of multiple Ser/Thr residues on the enzyme polypeptide. A synthetic peptide, corresponding to a 37-residue segment from the carboxyl-terminal tail of the kinase which resembles the sequence phosphorylated in S6, acts as a competitive inhibitor of p70 S6 kinase without itself being phosphorylated by the enzyme. This synthetic peptide is phosphorylated by an array of protein kinases which are rapidly activated by insulin. Thus, these sequences of p70 S6 kinase constitute a potential autoinhibitory pseudosubstrate site, whose phosphorylation is catalyzed by candidate upstream-activating protein kinases.  相似文献   

16.
To study the role of kinase dimerization in the activation of the insulin receptor (IR) and the insulin-like growth factor receptor-1 (IGF-1R), we have cloned, expressed, and purified monomeric and dimeric forms of the corresponding soluble kinase domains via the baculovirus expression system. Dimerization of the kinases was achieved by fusion of the kinase domains to the homodimeric glutathione S-transferase (GST). Kinetic analyses revealed that kinase dimerization results in substantial increases (10-100-fold) in the phosphotransferase activity in both the auto- and substrate phosphorylation reactions. Furthermore, kinase dimerization rendered the autophosphorylation reaction concentration-independent. However, whereas dimerization was required for the rapid autophosphorylation of the kinases, it was not essential for the enhanced kinase activity in substrate phosphorylation reactions. Comparison of HPLC-phosphopeptide maps of the monomeric and dimeric kinases revealed that dimerization leads to an increased phosphorylation of the regulatory activation loop of the kinases, strongly suggesting that bis- and trisphosphorylation of the activation loop are mediated by transphosphorylation within the kinase dimers. Most strikingly, limited proteolysis revealed that GST-mediated dimerization by itself had a major impact on the conformation of the activation loop by stabilizing a conformation that corresponds to the active, phosphorylated form of the kinase. Thus, in analogy to the insulin/IGF-1-ligated holoreceptors, the dimeric GST-kinases are primed to rapid autophosphorylation by an increase in the local concentration of both phosphoryl donor and phosphoryl acceptor sites and by a dimerization-induced conformational change of the activation loop that leads to an efficient transphosphorylation of the regulatory tyrosine residues.  相似文献   

17.
p90 ribosomal S6 kinases (RSKs), containing two distinct kinase catalytic domains, are phosphorylated and activated by extracellular signal-regulated kinase (ERK). The amino-terminal kinase domain (NTD) of RSK phosphorylates exogenous substrates, whereas the carboxyl-terminal kinase domain (CTD) autophosphorylates Ser-386. A conserved putative autoinhibitory alpha helix is present in the carboxyl-terminal tail of the RSK isozymes ((697)HLVKGAMAATYSALNR(712) of RSK2). Here, we demonstrate that truncation (Delta alpha) or mutation (Y707A) of this helix in RSK2 resulted in constitutive activation of the CTD. In vivo, both mutants enhanced basal Ser-386 autophosphorylation by the CTD above that of wild type (WT). The enhanced Ser-386 autophosphorylation was attributed to disinhibition of the CTD because a CTD dead mutation (K451A) eliminated Ser-386 autophosphorylation even in conjunction with Delta alpha and Y707A. Constitutive activity of the CTD appears to enhance NTD activity even in the absence of ERK phosphorylation because basal phosphorylation of S6 peptide by Delta alpha and Y707A was approximately 4-fold above that of WT. A RSK phosphorylation motif antibody detected a 140-kDa protein (pp140) that was phosphorylated upon epidermal growth factor or insulin treatment. Ectopic expression of Delta alpha or Y707A resulted in increased basal phosphorylation of pp140 compared with that of WT, presenting the possibility that pp140 is a novel RSK substrate. Thus, it is clear that the CTD regulates NTD activity in vivo as well as in vitro.  相似文献   

18.
Protein kinases are regulated by a large number of mechanisms that vary from one kinase to another. However, a fundamental activation mechanism shared by all protein kinases is phosphorylation of a conserved activation loop threonine residue. This is achieved in many cases via autophosphorylation. The mechanism and structural basis for autophosphorylation are not clear and are in fact enigmatic because this phosphorylation occurs when the kinase is in its inactive conformation. Unlike most protein kinases, MAP kinases are not commonly activated by autophosphorylation but rather by MEK-dependent phosphorylation. Here we show that p38β, a p38 isoform that is almost identical to p38α, is exceptional and spontaneously autoactivates by autophosphorylation. We identified a 13-residue-long region composed of part of the αG-helix and the MAPK insert that triggers the intrinsic autophosphorylation activity of p38β. When inserted into p38α, this fragment renders it spontaneously active in vitro and in mammalian cells. We further found that an interaction between the N terminus and a particular region of the C-terminal extension suppresses the intrinsic autophosphorylation of p38β in mammalian cells. Thus, this study identified the structural motif responsible for the unique autophosphorylation capability of p38β and the motif inhibiting this activity in living cells. It shows that the MAPK insert and C-terminal extension, structural motifs that are unique to MAPKs, play a critical role in controlling autophosphorylation.  相似文献   

19.
As class III unconventional myosins are motor proteins with an N-terminal kinase domain, it seems likely they play a role in both signaling and actin based transport. A growing body of evidence indicates that the motor functions of human class IIIA myosin, which has been implicated in progressive hearing loss, are modulated by intermolecular autophosphorylation. However, the phosphorylation sites have not been identified. We studied the kinase activity and phosphorylation sites of mouse class III myosins, mMyo3A and 3B, which are highly similar to their human orthologs. We demonstrate that the kinase domains of mMyo3A and 3B are active kinases, and that they have similar, if not identical, substrate specificities. We show that the kinase domains of these proteins autophosphorylate, and that they can phosphorylate sites within their myosin and tail domains. Using liquid chromatography-mass spectrometry, we identified phosphorylated sites in the kinase, myosin motor and tail domains of both mMyo3A and 3B. Most of the phosphorylated sites we identified and their consensus phosphorylation motifs are highly conserved among vertebrate class III myosins, including human class III myosins. Our findings are a major step toward understanding how the functions of class III myosins are regulated by phosphorylation.  相似文献   

20.
To define how extracellular signals activate bacterial receptor Ser/Thr protein kinases, we characterized the regulatory functions of a weak dimer interface identified in the Mycobacterium tuberculosis PknB and PknE receptor kinases. Sequence comparisons revealed that the analogous interface is conserved in PknD orthologs from diverse bacterial species. To analyze the roles of dimerization, we constructed M. tuberculosis PknD kinase domain (KD) fusion proteins that formed dimers upon addition of rapamycin. Dimerization of unphosphorylated M. tuberculosis PknD KD fusions stimulated phosphorylation activity. Mutations in the dimer interface reduced this activation, limited autophosphorylation, and altered substrate specificity. In contrast, an inactive catalytic site mutant retained the ability to stimulate the wild-type KD by dimerization. These results support the idea that dimer formation allosterically activates unphosphorylated PknD. The phosphorylated PknD KD was fully active even in the absence of dimerization, suggesting that phosphorylation provides an additional regulatory mechanism. The conservation of analogous dimers in diverse prokaryotic and eukaryotic Ser/Thr protein kinases implies that this mechanism of protein kinase regulation is ancient and broadly distributed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号