首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogenase activity in cell-free extracts of Azotobacter vinelandii declines during encystment. Upon germination a rapid increase in activity is observed, which is suppressed by rifampicin, suggesting that de novo biosynthesis of the nitrogenase proteins is required. The decline of activity during encystment is accompanied by disappearance of both nitrogenase proteins from cell extracts, indicating irreversible proteolysis. Total proteinase activity does not change significantly during encystment.  相似文献   

2.
Azotobacter vinelandii takes up the ammonium analog methylammonium from the external medium and metabolizes it to a less polar compound which has been identified as N-methylglutamine. The enzyme glutamine synthetase appears responsible for methylammonium metabolism in this organism and full activity of the enzyme is required for maximal rates of methylammonium uptake. L-methionine-DL-sulfoximine or L-methionine sulfone, inhibitors of glutamine synthetase activity, were shown to reduce the rate of methylammonium uptake by wild type cultures. A mutant strain with low glutamine synthetase activity was shown to be unable to carry out in vitro N-methylglutamine synthesis or in vivo uptake of methylammonium. Thus, methylammonium uptake assays may prove useful as a method of identifying mutants with altered glutamine synthetase activity.Abbreviations MSX L-methionine-DL-sulfoximine - MSF L-methionine sulfone  相似文献   

3.
Growth and nitrogenase activity (acetylene reduction) of Azotobacter vinelandii in chemically defined N-free media were studied in the presence of p-hydroxybenzoic, vanillic, p-coumaric, and ferulic acids at concentrations from 0.01 to 1% (w/v). Growth and nitrogenase activity were only detected when the microorganism was cultured on p-hydroxybenzoic acid either as sole carbon source or mixed with other phenolic acids, suggesting that p-hydroxybenzoic acid could be utilized as a carbon source by A. vinelandii for growing under certain environmental conditions.  相似文献   

4.
In the presnet studies with whole cells and extracts of the photosynthetic bacterium Rhodopseudomonas capsulata the rapid inhibition of nitrogenase dependent activities (i.e. N2-fixation acetylene reduction, or photoproduction of H2) by ammonia was investigated. The results suggest, that the regulation of the nitrogenase activity by NH 4 + in R. capsulata is mediated by glutamine synthetase (GS). (i) The glutamate analogue methionine sulfoximine (MSX) inhibited GS in situ and in vitro, and simultaneously prevented nitrogenase activity in vivo. (ii) When added to growing cultures ammonia caused rapid adenylylation of GS whereas MSX abolished the activity of both the adenylylated and unadenylylated form of the enzyme. (iii) Recommencement of H2 production due to an exhaustion of ammonia coincided with the deadenylylation of GS. (iv) In extracts, the nitrogenase was found to be inactive only when NH 4 + or MSX were added to intact cells. Subsequently the cells had to be treated with cetyltrimethylammonium bromide (CTAB). (v) In extracts the nitrogenase activity declined linearily with an increase of the ration of adenylylated vs. deadenylylated GS. A mechanism for inhibition of nitrogenase activity by ammonia and MSX is discussed.Abbreviations BSA bovin serum albumine - CTAB cetyltrimethylammonium bromide - GOGAT l-glutamine: 2-oxoglutarate amino transferase - GS glutamine synthetase - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

5.
Growth and nitrogenase activity were studied in cultures ofAzotobacter vinelandii growing with dinitrogen, ammonium sulfate, aspartic acid or yeast extract. Nitrogenase activity was measured by means of the C2H2 reduction test.In the presence of ammonium sulfate nitrogenase is completely repressed. After exhaustion of ammonia its activity is restored following a diauxic lag period of 30 min. With aspartic acid nitrogenase activity is partially repressed, and growth yield is higher than in the culture growing with N2 only. This is due to simultaneous use of dinitrogen and aspartate. Fluctuations of nitrogenase activity occurring during exponential growth and the mechanism of their regulation are discussed.Abbreviations NA nitrogenase activity - BNF Burk's nitrogen free medium  相似文献   

6.
Abstract The levels of intracellular adenine nucleotides, energy charge, oxygen consumption and poly-β-hydroxybutyric acid stored, have been investigated in dry vegetative cells and cysts of Azotobacter vinelandii . The data show that under desiccation conditions the cysts retain viability at energy charge values of 0.20 and an ATP/ADP ratio of 0.24, whereas under the same desiccation conditions, vegetative cells die at energy charge values <0.5 and an ATP/ADP ratio of <0.6.  相似文献   

7.
Azotobacter vinelandii was grown at constant growth rate in a chemostat with different molar ratios of sucrose to ammonium (C/N) in the influent media. Both compounds were consumed at essentially the same ratios as were present in the influent media. At low (C/N)-ratios, the cultures were ammonium-limited. At increased (C/N)-ratio ammonium-assimilating cultures additionally began to fix dinitrogen. The (C/N)-ratio at which nitrogenase activity became measurable, increased when the ambient oxygen concentration was increased. Immunoblotting revealed the appearance of nitrogenase proteins when the activity became detectable. Nitrogenase activity as determined either by acetylene reduction or by total nitrogen fixation gave constant relative activities of 1:3.8 (mol of N2 fixed per mol of acetylene reduced) under all sets of conditions used in this investigation. In spite of the oxygen dependent variation of the (C/N)-ratio, nitrogenase became active when the ammonium supply was less than about 14 nmol of ammonium per g of protein. This suggests that oxygen was not directly involved in the onset of dinitrogen fixation.  相似文献   

8.
Nitrogen-limited continuous cultures of Rhodopseudomonas capsulata were used to investigate some aspects of the regulation of nitrogenase activity. The role of glutamine synthetase (GS) in this regulation was examined by measuring changes of its adenylylation state when the light intensity and the nitrogen source were varied. Maximal nitrogenase activity was observed at a dilution rate corresponding to about one third of the maximum specific growth rate (max), both in ammonia- and in glutamate-limited cultures. At higher dilution rates, both GS and nitrogenase were inactivated by ammonia. Determination of the kinetics of inhibition of both enzymes indicated that the degree of inactivation of nitrogenase and the adenylylation state of GS were not closely related. Increase of light intensity stimulated nitrogenase activity dramatically. Conversely, a shift-down in light intensity to a limiting value resulted in a decrease of nitrogenase activity suggesting that synthesis was inhibited. On the other hand, the adenylylation state of glutamine synthetase appeared to be unaffected by changes in light intensity, indicating that GS is probably not involved in the regulation of nitrogenase expression by light.Abbreviations GS glutamine synthetase - R Rhodopseudomonas - Rs. Rhodospirillum - CTAB cetyltrimethylammonium bromide Dedicated to Prof. Dr. H. G. Schlegel on the occasion of his 60th birthday  相似文献   

9.
Summary The tetracycline-resistant transposon Tn10 and its high-hopper derivative Tn10HH104 were introduced into the Azotobacter vinelandii genome using suicide conjugative plasmids derived from pRK2013. Several types of mutants induced by either of these elements are described. Nif- mutants (deficient in nitrogen fixation) were easily isolated, whereas the isolation of other mutant types (auxotrophs, sugar non-users) required special selection conditions. The characterization of the mutations as transposon insertions was often complicated and sometimes required a combination of genetic and physical tests. A common source of complication, the existence of double inserts, was found among the mutants induced by Tn10HH104 but not among those induced by Tn10. Both the high-hopper and the wild-type element proved to undergo secondary transpositions, albeit at different frequencies. Another type of complication, the existence of heterozygotes, occurred because of the high level of redundancy of the A. vinelandii genome.  相似文献   

10.
In bioelectrochemical studies, redox mediators such as methylene blue, natural red, and thionine are used to studying the redox characteristics of enzymes in the living cell. Here we show that nitrogenase activity in Azotobacter vinelandii is completely inhibited by oxidized methylene blue (MBo) when the concentration of this mediator in the medium is increased up to 72 M. This activity in A. vinelandii is somewhat inhibited by a coenzyme, ascorbic acid (AA). However, the nitrogenase activity within the A. vinelandii cell is unchanged even for a high concentration of oxidized natural red (NRo) alone. Interestingly, these mediators and AA do not have the capacity to inhibit the H2 uptake activity of the hydrogenase in A. vinelandii. Average active rates of 66 nM H2 evolved/mg cell protein/min from the nitrogenase and 160 nM H2-uptake/mg cell protein/min from the hydrogenase in A. vinelandii are found in aid of the activities of the enzymes for H2 evolution and for H2 uptake are compared. The activities of both enzymes in A. vinelandii are strongly inhibited by thionine having high oxidative potential. Mechanisms of various mediators acting in vivo for both enzymes in A. vinelandii are discussed.  相似文献   

11.
Abstract: The structure of glutamine synthetase (GS) enzymes from diverse bacterial groups fall into three distinct classes. GSI is the typical bacterial GS, GSII is similar to the eukaryotic GS and is found together with GSI in plant symbionts and Streptomyces , while GSIII has been found in two unrelated anaerobic rumen bacteria. In most cases, the structural gene for GS enzyme is regulated in response to nitrogen. However, different regulatory mechanisms, to ensure optimal utilization of nitrogen substrates, control the GS enzyme in each class.  相似文献   

12.
Nitrogenase activity in Rhodopseudomonas palustris is subject to a rapid switch-off in response to exogenous ammonia. When cells were grown on limiting nitrogen and eventually became nitrogen deficient, nitrogenase synthesis was fully derepressed but the enzyme was insensitive to ammonia. The transformation of ammonia-sensitive to ammonia-insensitive cells was a slow, but fully reversible process. The switch-off effect in ammonia-sensitive cells paralleled changes in the adenylylation state of glutamine synthetase. Ammonia-insensitive cells, however, showed similar changes in glutamine synthetase activity although nitrogenase activity was unaffected. We conclude that nitrogenase regulation and adenylylation of glutamine synthetase are independent processes, at least under conditions of nitrogen deficiency.  相似文献   

13.
Azotobacter vinelandii growing in oxygen controlled chemostat culture was subjected to sudden increases of ambient oxygen concentrations (oxygen stress) after adaptation to different oxygen concentrations adjustable with air (100% air saturation corresponds to 225±14 M O2). Inactivations of cellular nitrogenase during stress (switch off) as well as after release of stress (switch on) were evaluated in vivo as depending on stress duration and stress height (pO2). Switch off was at its final extent within 1 min of stress. The extent of switch off, however, increased with stress height and was complete at pO2 between 8–10% air saturation irrespective of different oxygen concentrations the organisms were adapted to before stress, indicating that switch off is adaptable. Inactivation of nitrogenase measurable after switch on represents irreversible loss of activity. Irreversible inactivation was at its characteristic level within less than 3 min of stess and at a pO2 of less than 1% air saturation. The level of irreversible inactivation increased linearly with the oxygen concentration the organisms were adapted to before stress. Thus adaptation of cells to increased oxygen concentrations did not prevent increased susceptibility of nitrogenase to irreversible inhibition during oxygen stress. The fast response of irreversible inactivation at low stress heights suggests that it takes place already during stress. Thus switch off comprised both a reversible and an irreversible phase. The data showed that reversible inactivation of nitrogenase was less susceptible to oxygen stress than irreversible inactivation. A basic pre-requisite of the hypothesis of respiratory protection of nitrogenase, i.e. the proposed relationship between respiratory activities and the protection of nitrogenase from irreversible inhibition by oxygen, was not supported by the results of this report.  相似文献   

14.
Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. While recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To investigate approaches to decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in an essentially wild type strain of C. thermocellum. Deletion of glnA reduced levels of secreted valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine levels indicative of nitrogen-rich conditions. We propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.  相似文献   

15.
Glutamine synthetase (EC 6.3.1.2) was purified to homogeneity from a free-living nitrogen fixing bacteria, Bacillus polymyxa. The holoenzyme, relative molecular mass (Mr) of 600 000 is composed of monomeric sub-units of 60 000 (Mr). The isoelectric point of the sub-units was 5.2. The pH optimum for the biosynthetic and transferase enzyme activity was 8.2 and 7.8, respectively. The apparent K m values (K m app ) in the biosynthetic reaction for glutamate, NH4Cl and ATP were 3.2, 0.22 and 1 mM, respectively. In the transferase reaction the K m values for glutamine, hydroxylamine and ADP were 6.5, 3.5 and 8×10-4 mM respectively. L-Methionine-D-L-sulfoximine was a very potent inhibitor in both biosynthetic and transferase reactions. Similar to most Gram positive bacteria there was no evidence of in vivo adenylylation and the enzyme seemed to be mainly regulated by feed-back mechanism.Abbreviations PMSF phenylmethylsulfonylfluoride - TCA trichloroacetic acid - GS glutamine synthetase - MSO L-Methionine-D-L-sulfoximine - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis - SVPDE snake venum phosphodiesterase  相似文献   

16.
Nitrogen-limited continuous cultures of Cyanidium caldarium contained induced levels of glutamine synthetase and nitrate reductase when either nitrate or ammonia was the sole nitrogen source. Nitrate reductase occurred in a catalytically active form. In the presence of excess ammonia, glutamine synthetase and nitrate reductase were repressed, the latter enzyme completely. In the presence of excess nitrate, intermediate levels of glutamine synthetase activity occurred. Nitrate reductase was derepressed but occurred up to 60% in a catalytically inactive form.Cell suspensions of C. caldarium from nitrate- or ammonialimited cultures assimilated either ammonia or nitrate immediately when provided with these nutrients. In these types of cells, as well as in cells grown with excess nitrate, the rate of ammonia assimilation was 2.5-fold higher than the rate of nitrate assimilation. It is proposed that the reduced rate at which nitrate was assimilated as compared to ammonia might be due to regulatory mechanisms which operate at the level of nitrate reductase activity.  相似文献   

17.
The activities of glutamine synthetase (GS), nitrogenase and leghaemoglobin were measured during nodule development in Phaseolus vulgaris infected with wild-type or two non-fixing (Fix-) mutants of Rhizobium phaseoli. The large increase in GS activity which was observed during nodulation with the wild-type rhizobial strain occurred concomitantly with the detection and increase in activity of nitrogenase and the amount of leghaemoglobin. Moreover, this increase in GS was found to be due entirely to the appearance of a novel form of the enzyme (GSn1) in the nodule. The activity of the form (GSn2) similar to the root enzyme (GSr) remained constant throughout the experiment. In nodules produced by infection with the two mutant strains of Rhizobium phaseoli (JL15 and JL19) only trace amounts of GSn1 and leghaemoglobin were detected.Abbreviations DEAE-Sephacel diethylaminoethyl-Sephacel - GS glutamine synthetase  相似文献   

18.
The amino acid and carbohydrate content of chloroplastic glutamine synthetase from tobacco leaves has been analysed. The enzyme subunit contanins 5% carbohydrate, mainly represented by glucosamine, galactosamine, glucose, galactose and mannose residues. The enzyme subunit displayed a single band of molecular mass 44000 Da after sodium dodecyl sulphate (SDS) electrophoresis. However, when isoelectrofocussing electrophoresis was performed, four subunits were evident differing by their charge. Furthermore, the four different subunits stained positively when tested with periodic acid Shiff reagent, showing that sugars and amino sugars were present within all the subunits.  相似文献   

19.
An enzyme catalyzing the hydrolysis of purine nucleosides was found to occur in the extract of Azotobacter vinelandii, strain 0, and was highly purified by ammonium sulfate fractionation, DEAE-cellulose chromatography, hydroxylapatite chromatography and gel filtration on Sephadex G-150. A strict substrate specificity of the purified enzyme was shown with respect to the base components. The enzyme specifically attacked the nucleosides without amino groups in the purine moiety: inosine gave the maximum rate of hydrolysis and xanthosine was hydrolyzed to a lesser extent. The pH optimum of inosine hydrolysis was observed from pH 7 to 9, while xanthosine was hydrolyzed maximally at pH 7. The K m values of the enzyme for inosine were 0.65 and 0.85 mM at pH 7.1 and 9.0, respectively, and the value for xanthosine was 1.2 mM at pH 7.1.Several nucleotides inhibited the enzyme: the phosphate portions of the nucleotides were suggested to be responsible for the inhibition by nucleotides. Although the inhibition of the enzyme by nucleotides was apparently non-competitive type with respect to inosine, allosteric (cooperative) binding of the substrate was suggested in the presence of the inhibitor. The physiological significance of the enzyme was discussed in connection with the degradation and salvage pathways of purine nucleotides.  相似文献   

20.
High performance liquid chromatography (HPLC) has been used to determine the internal levels of amino acids in Rhodobacter capsulatus E1F1 cells, subjected to different treatments and nutritional conditions. Glutamine synthetase activity and enzyme concentration correlated negatively with the level of glutamine, suggesting that glutamine per se acts as a co-repressor in the enzyme synthesis. Moreover, addition of the specific inhibitor L-methionine-D,L-sulfoximine, that produced an increase in enzyme concentration, specifically promoted a depletion of intracellular glutamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号