首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Since protein synthesis in the developing brain may, under certain conditions, be limited by amino acid availability, the present studies were undertaken to characterize the kinetics of large neutral amino acid transport through the blood-brain barrier (BBB) of the newborn rabbit. The Km, Vmax, and KD of the transport of eight amino acids were determined by a nonlinear regression analysis of data obtained with the carotid injection technique. Compared with kinetic parameters observed for the adult rat, the Km, Vmax, and KD of amino acid transport were all two- to threefold higher in the newborn. Albumin was found to bind tryptophan actively in vitro , but had no inhibitory effect on tryptophan transport through the newborn BBB. Glutamine was transported through the BBB of the newborn at rates severalfold higher than are seen in the adult rat. However, glutamine transport was not inhibited by high concentrations of N -methylaminoisobutyric acid (NMAIB), a model amino acid that is specific for the alanine-preferring or A-system present in peripheral tissues. In conclusion, these studies show that the BBB neutral amino acid transport system of the newborn rabbit has a lower affinity and higher capacity than does the BBB of the adult rat. Under conditions of high plasma amino acids, the increased capacity of the newborn transport system allows for a higher rate of amino acid transport into brain than would occur via the lower capacity system present in the adult rat brain.  相似文献   

2.
On treatment with collagenase, brain microvessels, together with several protein components, lose some enzymatic activities such as alkaline phosphatase and gamma-glutamyltranspeptidase, whereas no change occurs in the activities of 5'-nucleotidase and glutamine synthetase. The energy-requiring "A-system" of polar neutral amino acid transport is also severely inactivated, whereas the L-system for the facilitated exchange of branched chain and aromatic amino acids is preserved. In the collagenase-digested microvessels, this leads to loss of the transtimulation effect of glutamine on the transport of large neutral amino acids, because such transtimulation is due to a cooperation between the A- and L-systems. By contrast, NH4+ maintains (and even enhances) its ability to stimulate the L-system of amino acid transport, presumably through glutamine synthesis within the endothelial cells.  相似文献   

3.
Limited Blood-Brain Barrier Transport of Polyamines   总被引:3,自引:1,他引:2  
Transport of polyamines across the blood-brain barrier of adult rats was examined by measuring the amount of radioactivity that reached the forebrain 5 s after a "bolus" intracarotid injection. The values were expressed by the brain uptake index (BUI), which is the percentage of material transported in relation to freely diffusible water in a single passage through the brain. Transport was restricted as indicated by the respective BUI values, presented as means +/- SD (number of animals): putrescine, 5.3 +/- 0.8 (11); spermidine, 6.1 +/- 1.3 (7); and spermine, 5.8 +/- 0.5 (4). A kinetic study of the transport of [14C]putrescine showed that transport due to passive diffusion accounted for the majority of the observed influx (66% at 1 mM putrescine). However, a small saturable component exists with a Km value of 4-5 mM and a Vmax of 30 nmol X min-1 X g-1. This Km value is considerably higher than the circulating levels of the polyamine in the normal mature animal, and thus is unlikely to be of physiological significance. Competition studies indicated that putrescine does not interact with carriers for adenosine, arginine, choline, or leucine.  相似文献   

4.
Abstract: The nature of cysteine and cystine uptake from the cerebral capillary lumen was studied in the rat using the carotid injection technique. [35S]-Cysteine uptake was readily inhibited by the synthetic amino acid 2-amino-bicyclo(2,2,1)heptane-2-carboxylic acid (BCH), the defining substrate for the leucine-preferring (L) system in the Ehrlich ascites cell. The addition of non-radioactive alanine or serine, representatives of the alanine, serine, and cysteine-preferring (ASC) system, produced no significant decrease in the uptake of cysteine after cysteine transport by the L system was blocked with BCH. This indicated that the major component of cysteine's transport from the brain capillary lumen was by the L system with no detectable uptake of cysteine by the ASC system. No carrier-mediated transport of cystine, the disulfide form of the amino acid, was detected, nor was there any inhibition by cystine of the transport of the neutral amino acid methionine or the basic amino acid arginine. These results suggest that the ASC system, if present, is not quantitatively important for the transport of neutral amino acids from the brain capillary lumen.  相似文献   

5.
The kinetic constants for large neutral amino acid (LNAA) transport across the blood-brain barrier (BBB) of conscious rats were determined in four brain regions: cortex, caudate-putamen, hippocampus, and thalamus-hypothalamus. Indwelling external carotid artery catheters allowed for single-bolus (200 microliters) injections directly into the arterial system of unanesthetized and lightly restrained animals. Our results showed lower brain uptake index values for conscious rats compared to previous reports for anesthetized animals which are consistent with higher rates of cerebral blood flow in the conscious animals. Km values were lower in the conscious animals and ranged from 29% to 87% of the Km values in pentobarbital-anesthetized animals whereas the KD values were about twofold higher in the conscious animals. No apparent regional differences were observed. Influx rates were determined which take into consideration flow rates and plasma amino acid concentrations. Our results showed an average amino acid influx value of 5.2 nmol/min/g, which is 53% higher than the average influx in pentobarbital-anesthetized animals. The present results in conscious animals regarding the low Km of LNAA transport across the BBB lend further support to the importance of fluctuations in plasma amino acid concentrations and LNAA transport competitive effects on brain amino acid availability.  相似文献   

6.
Anesthetics, particularly barbiturates, have depressive effects on cerebral blood flow and metabolism and likely have similar effects on blood-brain barrier (BBB) transport. In previous studies utilizing the carotid injection technique, it was necessary to anesthetize the animals prior to performing the experiment. The carotid injection technique was modified by catheter implantation in the external carotid artery at the bifurcation of the common carotid artery. The technique was used to determine cerebral blood flow, the Km, Vmax, and KD of glucose transport in hippocampus, caudate, cortex, and thalamus-hypothalamus in conscious rats. Blood flow increased two to three times from that seen in the anesthetized rat. The Km in the four regions ranged between 6.5 and 9.2 mM, the Vmax ranged between 1.15 and 2.07 mumol/min/g, and the KD ranged between 0.015 and 0.035 ml/min/g. The Km and KD in the conscious rat did not differ from the values seen in the barbiturate anesthetized rat. The Vmax, on the other hand, increased two- to three-fold from that seen in the anesthetized rat and was nearly proportional to the increase in blood flow seen in the conscious rat. The development of the external carotid catheter technique now allows for determination of BBB substrate transport in conscious animals.  相似文献   

7.
Kinetics of Neutral Amino Acid Transport Across the Blood-Brain Barrier   总被引:12,自引:8,他引:12  
Neutral amino acid (NAA) transport across the blood-brain barrier was examined in pentobarbital-anesthetized rats with an in situ brain perfusion technique. Fourteen of 16 plasma NAAs showed measurable affinity for the cerebrovascular NAA transport system. Values of the transport constants (Vmax, Km, KD) were determined for seven large NAAs from saturation studies, whereas Km values for five small NAAs were estimated from inhibition studies. These data, together with our previous work, provide a complete set of constants for prediction of NAA influx from plasma. Among the NAAs, Vmax varied at least fivefold and Km varied approximately 700 fold. The apparent affinity (1/Km) of each NAA was related linearly (r = 0.910) to the octanol/water partition coefficient, a measure of NAA side-chain hydrophobicity. Predicted influx values from transport constants and average plasma concentrations agree well with values measured using plasma perfusate. These results provide accurate new estimates of the kinetic constants that determine NAA transport across the blood-brain barrier. Furthermore, they suggest that affinity of a L-alpha-amino acid for the transport system is determined primarily by side-chain hydrophobicity.  相似文献   

8.
Fatty Acid Transport Through the Blood-Brain Barrier   总被引:2,自引:2,他引:2  
Across the cerebral capillaries, the anatomical locus of the blood-brain barrier, the unidirectional influxes of the saturated fatty acids, octanoic and myristic acids, and the unsaturated essential fatty acid, linoleic acid, were measured. Employing an in situ rat brain perfusion technique that allows control of perfusate composition and accurate measurement of perfusate-to-brain fatty acid transport, we found that both [14C]octanoic and [14C]myristic acids were transported through the blood-brain barrier in vivo, in large part, by a specific, probenecid-sensitive transport system. However, the transport of [14C]linoleic acid was not probenecid sensitive. With 0.5 μM fatty acid but no plasma proteins in the perfusate, the permeability-surface area constant was higher for myristic acid (4.8 × 10--2× s-1) than for octanoic and linoleic acids (1.5 and 1.2 × 10--2× s-1, respectively). Approximately 70, 30, and 25% of the [14C]myristic, [14C]octanoic, or [14C]linoleic acids, respectively, were extracted from the perfusate.  相似文献   

9.
The effects of pH (3.5-7.5) on the brain uptake of histidine by the blood-brain barrier (BBB) carriers for neutral and cationic amino acids were tested, in competition with unlabeled histidine, arginine, or phenylalanine, with the single-pass carotid injection technique. Cationic amino acid ( [14C]arginine) uptake was increasingly inhibited by unlabeled histidine as the pH of the injection solution decreased. In contrast, the inhibitory effect of unlabeled histidine on neutral amino acid ( [14C]phenylalanine) uptake decreased with decreasing pH. Brain uptake indices with varying histidine concentrations indicated that the neutral form of histidine inhibited phenylalanine uptake whereas the cationic form competed with arginine uptake. Since phenylalanine decreased [14C]histidine uptake at all pH values whereas arginine did not, it was concluded that the cationic form of histidine had an affinity for the cationic carrier, but was not transported by it. We propose that the saturable entry of histidine into brain is, under normal physiological circumstances, mediated solely by the carrier for neutral amino acids.  相似文献   

10.
The transport of amino acids across the blood-brain barrier was measured with the single-pass carotid injection method. The pH of the injected bolus varied between 4.5 and 8.5. Arginine and lysine uptakes were inhibited 24% at pH 5.5 and 59% at pH 4.5. The uptakes of 2-aminobicyclo (2,2,1) heptane-2-carboxylic acid and phenylalanine were unaffected at this pH. There were also no changes observed in choline, glucose, or butanol transport. The Ki of arginine transport inhibition by H+ was 2.4 +/- 0.5 microM; i.e., pH 5.6 +/- 0.1. No change with pH occurred in the Km of arginine transport, while a significant decrease (p less than 0.01) was observed in the Vmax (10.2 +/- 2.3 nmol min-1 g-1 and 5.6 +/- 2.3 nmol min-1 g-1 at pH 7.5 and pH 5.5, respectively). This noncompetitive inhibition was found to be transient as arginine uptake at pH 7.5; it was measured by carotid injection 30 sec following a previous bolus which was buffered to pH 4.5, and was not significantly different from the control. This selective inhibition of the blood-brain barrier basic amino acid carrier demonstrates the advantage of the carotid injection approach in exposing the capillary exchange site to extreme alterations in chemical composition which could not be tolerated systemically.  相似文献   

11.
Abstract: The influx of phenylalanine, tryptophan, leucine, and lysine across the blood-brain barrier of individual brain structures was studied in rats 7–8 weeks after a portacaval shunt or sham operation. The method involved a brief infusion of labeled amino acid in tracer quantity and quantitative autoradiography. The clearance rates of phenylalanine, tryptophan, and leucine were increased in proportion to each other in every region examined, but not by the same factor. Tryptophan clearance increased the most (about 200%) and leucine the least (about 30%), compared with phenylalanine (about 80%). This was unexpected, as all three amino acids are believed to be transported by the same mechanism. The changes were most marked in several limbic structures and the reticular formation, whereas the hypothalamus was least affected. Plasma clearance of lysine was decreased in all areas by about 70%. Since the circulating lysine concentration was decreased by 13%, the actual rate of lysine influx was even more reduced. The results demonstrate specific alterations in two different amino acid transport systems. The resulting excess brain neutral amino acids, some of which are neurotransmitter precursors, as well as reduced basic amino acid availability, may be of etiological significance in hepatic encephalopathy.  相似文献   

12.
Regional transport of 1-aminocyclohexanecarboxylic acid (ACHC), a nonmetabolizable amino acid, across the blood-brain barrier was studied in pentobarbital-anesthetized rats using an in situ brain perfusion technique. The concentration dependence of influx was best described by a model with a saturable and a nonsaturable component. Best-fit values for the kinetic constants of the frontal cortex equaled 9.7 X 10(-4) mumol/s/g for Vmax, 0.054 mumol/ml for Km, and 1.0 X 10(-4) ml/s/g for KD in the absence of competing amino acids. Saturable influx could be reduced by greater than 85% by either L-phenylalanine or 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with transport by the cerebrovascular neutral amino acid transport system. The transport Km for ACHC was one-fifth that for the more commonly used homologue, 1-aminocyclopentanecarboxylic acid, and was similar to values for several natural amino acids, such as L-methionine, L-isoleucine, and L-tyrosine. The results indicate that ACHC may be a useful probe for in vivo studies of amino acid transport into brain.  相似文献   

13.
Unidirectional L-phenylalanine transport into six brain regions of pentobarbital-anesthetized rats was studied using the in situ brain perfusion technique. This technique allows both accurate measurements of cerebrovascular amino acid transport and complete control of perfusate amino acid composition. L-Phenylalanine influx into the brain was sodium independent and could be described by a model with a saturable and a nonsaturable component. Best-fit values for the kinetic constants in the parietal cortex equaled 6.9 X 10(-4) mumol/s/g for Vmax, 0.011 mumol/ml for Km, and 1.8 X 10(-4) ml/s/g for KD during perfusion with fluid that did not contain competing amino acids. D-Phenylalanine competitively inhibited L-phenylalanine transport with a Ki approximately 10-fold greater than the Km for L-phenylalanine. There were no significant regional differences in Km, KD, or Ki, whereas Vmax was significantly greater in the cortical lobes than in the other brain regions. L-Phenylalanine influx during plasma perfusion was only 30% of that predicted in the absence of competing amino acids. Competitive inhibition increased the apparent Km during plasma perfusion by approximately 20-fold, to 0.21 mumol/ml. These data provide accurate new estimates of the kinetic constants that describe L-phenylalanine transport across the blood-brain barrier. In addition, they indicate that the cerebrovascular transfer site affinity (1/Km) for L-phenylalanine is three- to 12-fold greater than previously estimated in either awake or anesthetized animals.  相似文献   

14.
15.
The activity of the blood-brain neutral amino acid transport system is increased in rats infused with ammonium salts or rendered hyperammonemic by a portacaval anastomosis. This effect may be due to a direct action of ammonia or to some metabolic consequence of high ammonia levels, such as increased brain glutamine synthesis. To test these possibilities we evaluated the kinetic parameters of blood-brain transport of leucine and phenylalanine in control rats, in rats after continuous 24 h infusion of ammonium salts (NH4+ = 2.5 mmol X kg-1 X h-1), and in rats treated with methionine sulfoximine, an inhibitor of glutamine synthetase, before infusion of ammonium salts. In ammonia-infused rats without methionine sulfoximine treatment, the KD and Vmax of phenylalanine transport were increased, respectively, about 170% and 80% compared to controls, whereas the Km and Vmax of leucine transport were increased, respectively, about 100% and 200%. Electron microscopy demonstrated marked swelling of astrocytic processes around brain capillaries of ammonia-infused rats; however, capillary permeability to horseradish peroxidase apparently was not increased by ammonia infusion. Administration of methionine sulfoximine before ammonia infusion inhibited glutamine synthesis and prevented the changes in transport of leucine and phenylalanine, but apparently did not reverse the perivascular swelling. These results suggest that the ammonia-induced increase in the activity of transport of large neutral amino acids across the blood-brain barrier requires glutamine synthesis in brain, and is not a direct effect of ammonia.  相似文献   

16.
Intracerebral Dialysis and the Blood-Brain Barrier   总被引:6,自引:1,他引:6  
Abstract: The aim of the study was to evaluate how implantation of a dialysis probe influences the blood-brain barrier. Leakage of endogenous serum albumin was evaluated by Evans blue/albumin staining and by immunohistochemistry. The passage from blood to dialysate of two substances that normally do not pass into the brain, [3H]inulin and glutamate, was studied 3 and 24 h after insertion of a dialysis probe. Evans blue, given 20 min before rats were killed, was observed around the probe and surrounding brain tissue. Albumin immunoreactivity was seen at considerable distance from the probe with larger spread at 24 h than at 3 h after probe insertion. Glutamate and [3H]inulin were detected in the dialysate with no significant further increase of radioactivity after intracarotid infusion of protamine sulfate that enhances the permeability over the blood-brain barrier. When protamine was followed by infusion of glutamate, the concentrations of taurine increased in the dialysate in four of eight rats. That plasma constituents have access to the brain around the dialysis probe is essential to consider, particularly in studies using substances and drugs that do not pass an intact blood-brain barrier.  相似文献   

17.
Saturable Transport of Manganese(II) Across the Rat Blood-Brain Barrier   总被引:4,自引:3,他引:1  
Unanesthetized adult male rats were infused intravenously with solutions containing 54Mn (II) and one of six concentrations of stable Mn(II). The infusion was timed to produce a near constant [Mn] in plasma for up to 20 min. Plasma was collected serially and on termination of the experiment, samples of CSF, eight brain regions, and choroid plexus (CP) were obtained. Influx of Mn (JMn) was calculated from uptake of 54Mn into tissues and CSF at two different times. Plasma [Mn] was varied 1,000-fold (0.076-78 nmol/ml). Over this plasma concentration range, JMn increased 123 times into CP, 18-120 times into brain, and 706 times into CSF. CP and brain JMn values fit saturation kinetics with Km (nmol/ml) equal to 15 for CP and 0.7-2.1 for brain, and Vmax (10(-2) nmol.g-1.s-1) of 27 for CP and 0.025-0.054 for brain. Brain JMn except at cerebral cortex had a nonsaturable component. CSF JMn varied linearly with plasma [Mn]. These findings suggest that Mn transport into brain and CP is saturable, but transport into CSF is nonsaturable.  相似文献   

18.
The brain efflux index method has been used to clarify the mechanism of efflux transport of acidic amino acids such as L-aspartic acid (L-Asp), L-glutamic acid (L-Glu), and D-aspartic acid (D-Asp) across the blood-brain barrier (BBB). About 85% of L-[3H]Asp and 40% of L-[3H]Glu was eliminated from the ipsilateral cerebrum within, respectively, 10 and 20 min of microinjection into the brain. The efflux rate constant of L-[3H]Asp and L-[3H]Glu was 0.207 and 0.0346 min(-1), respectively. However, D-[3H]Asp was not eliminated from brain over a 20-min period. The efflux of L-[3H]Asp and L-[3H]Glu was inhibited in the presence of excess unlabeled L-Asp and L-Glu, whereas D-Asp did not inhibit either form of efflux transport. Aspartic acid efflux across the BBB appears to be stereospecific. Using a combination of TLC and the bioimaging analysis, attempts were made to detect the metabolites of L-[3H]Asp and L-[3H]Glu in the ipsilateral cerebrum and jugular vein plasma following a microinjection into parietal cortex, area 2. Significant amounts of intact L-[3H]Asp and L-[3H]Glu were found in all samples examined, including jugular vein plasma, providing direct evidence that at least a part of the L-Asp and L-Glu in the brain interstitial fluid is transported across the BBB in the intact form. To compare the transport of acidic amino acids using brain parenchymal cells, brain slice uptake studies were performed. Although the slice-to-medium ratio of D-[3H]Asp was the highest, followed by L-[3H]Glu and L-[3H]Asp, the initial uptake rate did not differ for both L-[3H]Asp and D-[3H]Asp, suggesting that the uptake of aspartic acid in brain parenchymal cells is not stereospecific. These results provide evidence that the BBB may act as an efflux pump for L-Asp and L-Glu to reduce the brain interstitial fluid concentration and act as a static wall for D-Asp.  相似文献   

19.
We studied the hexose transporter protein of the frontal and temporal neocortex, hippocampus, putamen, cerebellum, and cerebral microvessels (which constitute the blood-brain barrier) in Alzheimer disease and control subjects by reversible and covalent binding with [3H]cytochalasin B and by immunological reactivity. In Alzheimer disease subjects, we found a marked decrease in the hexose transporter in brain microvessels and in the cerebral neocortex and hippocampus, regions that are most affected in Alzheimer disease, but there were no abnormalities in the putamen or cerebellum. Hexose transporter reduction in cerebral microvessels of Alzheimer subjects is relatively specific because other enzyme markers of brain endothelium were not significantly altered. The low density of the hexose transporter at the blood-brain barrier and in the cerebral cortex in Alzheimer disease may be related to decreased in vivo measurements of cerebral oxidative metabolism.  相似文献   

20.
We studied the effects of acute and streptozotocin-induced chronic hyperglycemia on regional brain blood flow and perfusion characteristics, and on the regional transport of glucose across the blood-brain barrier in awake rats. We found (1) a generalized decrease in regional brain blood flow in both acute and chronic hyperglycemia; (2) that chronic, but not acute, hyperglycemia is associated with a marked and diffuse decrease in brain L-glucose space; and (3) that chronic hyperglycemia does not alter blood-to-brain glucose transport. Taken together, these results suggest that in streptozotocin-induced chronic hyperglycemia, there is a reduction in the proportion of perfused brain capillaries and/or an alteration in brain endothelial membrane properties resulting in decreased noncarrier diffusion of glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号