首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Na(+)-Ca2+ exchanger contains internal regions of sequence homology known as the alpha repeats. The first region (alpha-1 repeat) includes parts of transmembrane segments (TMSs) 2 and 3 and a linker modeled to be a reentrant loop. To determine the involvement of the reentrant loop and TMS 3 portions of the alpha-1 repeat in exchanger function, we generated a series of mutants and examined ion binding and transport and regulatory properties. Mutations in the reentrant loop did not substantially modify transport properties of the exchanger though the Hill coefficient for Na+ and the rate of Na(+)-dependent inactivation were decreased. Mutations in TMS 3 had more striking effects on exchanger activity. Of mutations at 10 positions, 3 behaved like the wild-type exchanger (V137C, A141C, M144C). Mutants at two other positions expressed no activity (Ser139) or very low activity (Gly138). Six different mutations were made at position 143; only N143D was active, and it displayed wild-type characteristics. The highly specific requirement for an asparagine or aspartate residue at this position may indicate a key role for Asn143 in the transport mechanism. Mutations at residues Ala140 and Ile147 decreased affinity for intracellular Na+, whereas mutations at Phe145 increased Na+ affinity. The cooperativity of Na+ binding was also altered. In no case was Ca2+ affinity changed. TMS 3 may form part of a site that binds Na+ but not Ca2+. We conclude that TMS 3 is involved in Na+ binding and transport, but previously proposed roles for the reentrant loop need to be reevaluated.  相似文献   

2.
The electrophoretic mobility of the cardiac Na(+)-Ca(2+) exchange protein is different under reducing and nonreducing conditions. This mobility shift is eliminated in a cysteine-less exchanger, suggesting that the presence or absence of an intramolecular disulfide bond alters the conformation and mobility of the exchanger. Using cysteine mutagenesis and biochemical analysis, we have identified the cysteine residues involved in the disulfide bond. Cysteine 792 in loop h of the exchanger forms a disulfide bond with either cysteine 14 or 20 near the NH(2) terminus. Because the NH(2) terminus is extracellular, the data establish that loop h must also be extracellular. A rearrangement of disulfide bonds has previously been implicated in the stimulation of exchange activity by combinations of reducing and oxidizing agents. We have investigated the role of cysteines in the stimulation of the exchanger by the combination of FeSO(4) and dithiothreitol (Fe-DTT). Using the giant excised patch technique, we find that stimulation of the wild type exchanger by Fe-DTT is primarily due to the removal of a Na(+)-dependent inactivation process. Analysis of mutated exchangers, however, indicates that cysteines are not responsible for stimulation of the exchange activity by Fe-DTT. Ca(2+) blocks modification of the exchanger by Fe-DTT. Disulfide bonds are not involved in redox stimulation of the exchanger, and the modification reaction is unknown. Modulation of Na(+)-dependent inactivation may be a general mechanism for regulation of Na(+)-Ca(2+) exchange activity and may have physiological significance.  相似文献   

3.
The Na(+)-Ca2+ exchanger from Drosophila was expressed in Xenopus and characterized electrophysiologically using the giant excised patch technique. This protein, termed Calx, shares 49% amino acid identity to the canine cardiac Na(+)-Ca2+ exchanger, NCX1. Calx exhibits properties similar to previously characterized Na(+)-Ca2+ exchangers including intracellular Na+ affinities, current-voltage relationships, and sensitivity to the peptide inhibitor, XIP. However, the Drosophila Na(+)-Ca2+ exchanger shows a completely opposite response to cytoplasmic Ca2+. Previously cloned Na(+)-Ca2+ exchangers (NCX1 and NCX2) are stimulated by cytoplasmic Ca2+ in the micromolar range (0.1- 10 microM). This stimulation of exchange current is mediated by occupancy of a regulatory Ca2+ binding site separate from the Ca2+ transport site. In contrast, Calx is inhibited by cytoplasmic Ca2+ over this same concentration range. The inhibition of exchange current is evident for both forward and reverse modes of transport. The characteristics of the inhibition are consistent with the binding of Ca2+ at a regulatory site distinct from the transport site. These data provide a rational basis for subsequent structure-function studies targeting the intracellular Ca2+ regulatory mechanism.  相似文献   

4.
Hyponatremia is a predictor of poor cardiovascular outcomes during acute myocardial infarction and in the setting of preexisting heart failure [1]. There are no definitive mechanisms as to how hyponatremia suppresses cardiac function. In this report we provide evidence for direct down-regulation of Ca(2+) channel current in response to low serum Na(+). In voltage-clamped rat ventricular myocytes or HEK 293 cells expressing the L-type Ca(2+) channel, a 15mM drop in extracellular Na(+) suppressed the Ca(2+) current by ~15%; with maximal suppression of ~30% when Na(+) levels were reduced to 100mM or less. The suppressive effects of low Na(+) on I(Ca), in part, depended on the substituting monovalent species (Li(+), Cs(+), TEA(+)), but were independent of phosphorylation state of the channel and possible influx of Ca(2+) on Na(+)/Ca(2+) exchanger. Acidification sensitized the Ca(2+) channel current to Na(+) withdrawal. Collectively our data suggest that Na(+) and H(+) may interact with regulatory site(s) at the outer recesses of the Ca(2+) channel pore thereby directly modulating the electro-diffusion of the permeating divalents (Ca(2+), Ba(2+)).  相似文献   

5.
L-type Ca2+ current (I(Ca)) is reduced in myocytes from cardiac-specific Na+-Ca2+ exchanger (NCX) knockout (KO) mice. This is an important adaptation to prevent Ca2+ overload in the absence of NCX. However, Ca2+ channel expression is unchanged, suggesting that regulatory processes reduce I(Ca). We tested the hypothesis that an elevation in local Ca2+ reduces I(Ca) in KO myocytes. In patch-clamped myocytes from NCX KO mice, peak I(Ca) was reduced by 50%, and inactivation kinetics were accelerated as compared to wild-type (WT) myocytes. To assess the effects of cytosolic Ca2+ concentration on I(Ca), we used Ba2+ instead of Ca2+ as the charge carrier and simultaneously depleted sarcoplasmic reticular Ca2+ with thapsigargin and ryanodine. Under these conditions, we observed no significant difference in Ba2+ current between WT and KO myocytes. Also, dialysis with the fast Ca2+ chelator BAPTA eliminated differences in both I(Ca) amplitude and decay kinetics between KO and WT myocytes. We conclude that, in NCX KO myocytes, Ca2+-dependent inactivation of I(Ca) reduces I(Ca) amplitude and accelerates current decay kinetics. We hypothesize that the elevated subsarcolemmal Ca2+ that results from the absence of NCX activity inactivates some L-type Ca2+ channels. Modulation of subsarcolemmal Ca2+ by the Na+-Ca2+ exchanger may be an important regulator of excitation-contraction coupling.  相似文献   

6.
The Na(+)-Ca(2+) exchanger is a plasma membrane protein expressed at high levels in cardiomyocytes. It extrudes 1 Ca(2+) for 3 Na(+) ions entering the cell, regulating intracellular Ca(2+) levels and thereby contractility. Na(+)-Ca(2+) exchanger activity is regulated by intracellular Ca(2+), which binds to a region (amino acids 371-508) within the large cytoplasmic loop between transmembrane segments 5 and 6. Regulatory Ca(2+) activates the exchanger and removes Na(+)-dependent inactivation. The physiological role of intracellular Ca(2+) regulation of the exchanger is not yet established. Yellow (YFP) and cyan (CFP) fluorescent proteins were linked to the NH(2)- and CO(2)H-termini of the exchanger Ca(2+) binding domain (CBD) to generate a construct (YFP-CBD-CFP) capable of responding to changes in intracellular Ca(2+) concentrations by FRET efficiency measurements. The two fluorophores linked to the CBD are sufficiently close to generate FRET. FRET efficiency was reduced with increasing Ca(2+) concentrations. Titrations of Ca(2+) concentration versus FRET efficiency indicate a K(D) for Ca(2+) of approximately 140 nM, which increased to approximately 400 nM in the presence of 1 mM Mg(2+). Expression of YFP-CBD-CFP in myocytes, generated changes in FRET associated with contraction, suggesting that NCX is regulated by Ca(2+) on a beat-to-beat basis during excitation-contraction coupling.  相似文献   

7.
The kinetics of Na(+)-Ca2+ exchange current after a cytoplasmic Ca2+ concentration jump (achieved by photolysis of DM-nitrophen) was measured in excised giant membrane patches from guinea pig or rat heart. Increasing the cytoplasmic Ca2+ concentration from 0.5 microM in the presence of 100 mM extracellular Na+ elicits an inward current that rises with a time constant tau 1 < 50 microseconds and decays to a plateau with a time constant tau 2 = 0.65 +/- 0.18 ms (n = 101) at 21 degrees C. These current signals are suppressed by Ni2+ and dichlorobenzamil. No stationary current, but a transient inward current that rises with tau 1 < 50 microseconds and decays with tau 2 = 0.28 +/- 0.06 ms (n = 53, T = 21 degrees C) is observed if the Ca2+ concentration jump is performed under conditions that promote Ca(2+)-Ca2+ exchange (i.e., no extracellular Na+, 5 mM extracellular Ca2+). The transient and stationary inward current is not observed in the absence of extracellular Ca2+ and Na+. The application of alpha-chymotrypsin reveals the influence of the cytoplasmic regulatory Ca2+ binding site on Ca(2+)-Ca2+ and forward Na(+)-Ca2+ exchange and shows that this site regulates both the transient and stationary current. The temperature dependence of the stationary current exhibits an activation energy of 70 kj/mol for temperatures between 21 degrees C and 38 degrees C, and 138 kj/mol between 10 degrees C and 21 degrees C. For the decay time constant an activation energy of 70 kj/mol is observed in the Na(+)-Ca2+ and the Ca(2+)-Ca2+ exchange mode between 13 degrees C and 35 degrees C. The data indicate that partial reactions of the Na(+)-Ca2+ exchanger associated with Ca2+ binding and translocation are very fast at 35 degrees C, with relaxation time constants of about 6700 s-1 in the forward Na(+)-Ca2+ exchange and about 12,500 s-1 in the Ca(2+)-Ca2+ exchange mode and that net negative charge is moved during Ca2+ translocation. According to model calculations, the turnover number, however, has to be at least 2-4 times smaller than the decay rate of the transient current, and Na+ inward translocation appears to be slower than Ca2+ outward movement.  相似文献   

8.
In a revised topological model of the cardiac Na(+)-Ca(2+) exchanger, there are nine transmembrane segments (TMSs) and two possible re-entrant loops (Nicoll, D. A., Ottolia, M., Lu, Y., Lu, L., and Philipson, K. D. (1999) J. Biol. Chem. 274, 910-917; Iwamoto, T., Nakamura, T. Y., Pan, Y., Uehara, A., Imanaga, I., and Shigekawa, M. (1999) FEBS Lett. 446, 264-268). The TMSs form two clusters separated by a large intracellular loop between TMS5 and TMS6. We have combined cysteine mutagenesis and oxidative cross-linking to study proximity relationships of TMSs in the exchanger. Pairs of cysteines were reintroduced into a cysteine-less exchanger, one in a TMS in the NH(2)-terminal cluster (TMSs 1-5) and the other in a TMS in the COOH-terminal cluster (TMSs 6-9). The mutant exchanger proteins were expressed in HEK293 cells, and disulfide bond formation between introduced cysteines was analyzed by gel mobility shifts. Western blots showed that S117C/V804C, A122C/Y892C, A151C/T815C, and A151C/A821C mutant proteins migrated at 120 kDa under reducing conditions and displayed a partial mobility shift to 160 kDa under nonreducing conditions. This shift indicates the formation of a disulfide bond between these paired cysteine residues. Copper phenanthroline and the cross-linker N', N'-o-phenylenedimaleimide enhanced the mobility shift to 160 kDa. Our data suggest that TMS7 is close to TMS3 near the intracellular side of the membrane and is in the vicinity of TMS2 near the extracellular surface. Also, TMS2 must adjoin TMS8. This initial packing model of the exchanger brings two functionally important domains in the exchanger, the alpha 1 and alpha 2 repeats, close to each other.  相似文献   

9.
10.
11.
The deduced amino acid sequence of the cardiac sarcolemmal Na(+)-Ca2+ exchanger has a region which could represent a calmodulin binding site. As calmodulin binding regions of proteins often have an autoinhibitory role, a synthetic peptide with this sequence was tested for functional effects on Na(+)-Ca2+ exchange activity. The peptide inhibits the Na(+)-dependent Ca2+ uptake (KI approximately 1.5 microM) and the Nao(+)-dependent Ca2+ efflux of sarcolemmal vesicles in a noncompetitive manner with respect to both Na+ and Ca2+. The peptide is also a potent inhibitor (KI approximately 0.1 microM) of the Na(+)-Ca2+ exchange current of excised sarcolemmal patches. The binding site for the peptide on the exchanger is on the cytoplasmic surface of the membrane. The exchanger inhibitory peptide binds calmodulin with a moderately high affinity. From the characteristics of the inhibition of the exchange of sarcolemmal vesicles, we deduce that only inside-out sarcolemmal vesicles participate in the usual Na(+)-Ca2+ exchange assay. This contrasts with the common assumption that both inside-out and right-side-out vesicles exhibit exchange activity.  相似文献   

12.
13.
14.
Activity-dependent modulation of synaptic transmission is an essential mechanism underlying many brain functions. Here we report an unusual form of synaptic modulation that depends on Na+ influx and mitochondrial Na(+)-Ca2+ exchanger, but not on Ca2+ influx. In Ca(2+)-free medium, tetanic stimulation of Xenopus motoneurons induced a striking potentiation of transmitter release at neuromuscular synapses. Inhibition of either Na+ influx or the rise of Ca2+ concentrations ([Ca2+]i) at nerve terminals prevented the tetanus-induced synaptic potentiation (TISP). Blockade of Ca2+ release from mitochondrial Na(+)-Ca2+ exchanger, but not from ER Ca2+ stores, also inhibited TISP. Tetanic stimulation in Ca(2+)-free medium elicited an increase in [Ca2+]i, which was prevented by inhibition of Na+ influx or mitochondrial Ca2+ release. Inhibition of PKC blocked the TISP as well as mitochondrial Ca2+ release. These results reveal a novel form of synaptic plasticity and suggest a role of PKC in mitochondrial Ca2+ release during synaptic transmission.  相似文献   

15.
We expressed full-length Na+-Ca2+ exchangers (NCXs) with mutations in two Ca2+-binding domains (CBD1 and CBD2) to determine the roles of the CBDs in Ca2+-dependent regulation of NCX. CBD1 has four Ca2+-binding sites, and mutation of residues Asp421 and Glu451, which primarily coordinate Ca2+ at sites 1 and 2, had little effect on regulation of NCX by Ca2+. In contrast, mutations at residues Glu385, Asp446, Asp447, and Asp500, which coordinate Ca2+ at sites 3 and 4 of CBD1, resulted in a drastic decrease in the apparent affinity of peak exchange current for regulatory Ca2+. Another mutant, M7, with 7 key residues of CBD1 replaced, showed a further decrease in apparent Ca2+ affinity but retained regulation, confirming a contribution of CBD2 to Ca2+ regulation. Addition of the mutation K585E (located in CBD2) into the M7 background induced a marked increase in Ca2+ affinity for both steady-state and peak currents. Also, we have shown previously that the CBD2 mutations E516L and E683V have no Ca2+-dependent regulation. We now demonstrate that introduction of a positive charge at these locations rescues Ca2+-dependent regulation. Finally, our data demonstrate that deletion of the unstructured loops between β-strands F and G of both CBDs does not alter the regulation of the exchanger by Ca2+, indicating that these segments are not important in regulation. Thus, CBD1 and CBD2 have distinct roles in Ca2+-dependent regulation of NCX. CBD1 determines the affinity of NCX for regulatory Ca2+, although CBD2 is also necessary for Ca2+-dependent regulation.  相似文献   

16.
The energetic effect of extracellular Na(+) removal and readmission (in a nominally Ca(2+)-free perfusate) in Langendorff-perfused ventricles of transgenic mice (TM), which overexpress the sarcolemmal Na(+)-Ca(2+) exchanger; normal mice (NM); young (7-12 days old) rats (YR); and older (13-20 days old) rats (OR) was studied. In all heart muscles, extracellular Na(+) removal induced an increase in heat production (H(1)). Na(+) readmission further increased heat production to a peak value (H(2)) followed by a decrease toward initial values. These effects were more marked in the YR and TM as compared with the OR and NM groups, respectively. Caffeine (1 mM), ryanodine (0.2 microM), and verapamil (1 microM) decreased H(1) and H(2) in both rat groups. EGTA (1 mM) decreased H(1) and H(2) in the YR but not in the OR group. Thapsigargin (1 microM) decreased H(1) and H(2) in all four hearts preparations. A possible interpretation is that Na(+)-Ca(2+) exchange acts as an energy-saving mechanism to prevent Ca(2+) accumulation at the junctional sarcoplasmic reticulum zone (JSR) and thus prevents further release of Ca(2+). Extracellular Na(+) removal lead to Ca(2+) accumulation in the JSR inducing further SR-Ca(2+) release and increased energy release. Na(+) readmission removes the accumulated Ca(2+) at the JSR (cleft) zone by exchanging Ca(2+) with Na(+) producing a transitory increase in energy release due to Na(+)-K pump activation.  相似文献   

17.
Ca(2+) influx through the L-type Ca(2+) channels is the primary pathway for triggering the Ca(2+) release from the sarcoplasmic reticulum (SR). However, several observations have shown that Ca(2+) influx via the reverse mode of the Na(+)-Ca(2+) exchanger current (I(Na-Ca)) could also trigger the Ca(2+) release. The aim of the present study was to quantitate the role of this alternative pathway of Ca(2+) influx using a mathematical model. In our model 20% of the fast sodium channels and the Na(+)-Ca(2+) exchanger molecules are located in the restricted subspace between the sarcolemma and the SR where triggering of the calcium-induced calcium release (CICR) takes place. After determining the strengths of the alternative triggers with simulated voltage-clamps in varied membrane voltages and resting [Na](i) values, we studied the CICR in simulated action potentials, where fast sodium channel current contributes [Na](i) of the subspace. In low initial [Na](i) the Ca(2+) influx via the L-type Ca(2+) channels is the major trigger for Ca(2+) release from the SR, and the Ca(2+) influx via the reverse mode of the Na(+)-Ca(2+) exchanger cannot trigger the CICR. However, depending on the initial [Na](i), the contribution of the Ca(2+) entry via the exchanger may account for 25% (at [Na](i) = 10 mM) to nearly 100% ([Na](i) = 30 mM) of the trigger Ca(2+). The shift of the main trigger from L-type calcium channels to the exchanger reduced the delay between the action potential upstroke and the intracellular calcium transient. This may contribute to the function of the myocyte in physiological situations where [Na](i) is elevated. These main results remain the same when using different estimates for the most crucial parameters in the modeling or different models for the exchanger.  相似文献   

18.
TRPC3 has been suggested as a key component of phospholipase C-dependent Ca(2+) signaling. Here we investigated the role of TRPC3-mediated Na(+) entry as a determinant of plasmalemmal Na(+)/Ca(2+) exchange. Ca(2+) signals generated by TRPC3 overexpression in HEK293 cells were found to be dependent on extracellular Na(+), in that carbachol-stimulated Ca(2+) entry into TRPC3 expressing cells was significantly suppressed when extracellular Na(+) was reduced to 5 mm. Moreover, KB-R9743 (5 microm) an inhibitor of the Na(+)/Ca(2+) exchanger (NCX) strongly suppressed TRPC3-mediated Ca(2+) entry but not TRPC3-mediated Na(+) currents. NCX1 immunoreactivity was detectable in HEK293 as well as in TRPC3-overexpressing HEK293 cells, and reduction of extracellular Na(+) after Na(+) loading with monensin resulted in significant rises in intracellular free Ca(2+) (Ca(2+)(i)) of HEK293 cells. Similar rises in Ca(2+)(i) were recorded in TRPC3-overexpressing cells upon the reduction of extracellular Na(+) subsequent to stimulation with carbachol. These increases in Ca(2+)(i) were associated with outward membrane currents at positive potentials and inhibited by KB-R7943 (5 microm), chelation of extracellular Ca(2+), or dominant negative suppression of TRPC3 channel function. This suggests that Ca(2+) entry into TRPC3-expressing cells involves reversed mode Na(+)/Ca(2+) exchange. Cell fractionation experiments demonstrated co-localization of TRPC3 and NCX1 in low density membrane fractions, and co-immunoprecipitation experiments provided evidence for association of TRPC3 and NCX1. Glutathione S-transferase pull-down experiments revealed that NCX1 interacts with the cytosolic C terminus of TRPC3. We suggest functional and physical interaction of nonselective TRPC cation channels with NCX proteins as a novel principle of TRPC-mediated Ca(2+) signaling.  相似文献   

19.
The activity of the cardiac Na(+)/Ca(2+) exchanger (NCX1.1) undergoes continuous modulation during the contraction-relaxation cycle because of the accompanying changes in the electrochemical gradients for Na(+) and Ca(2+). In addition, NCX1.1 activity is also modulated via secondary, ionic regulatory mechanisms mediated by Na(+) and Ca(2+). In an effort to evaluate how ionic regulation influences exchange activity under pulsatile conditions, we studied the behavior of the cloned NCX1.1 during frequency-controlled changes in intracellular Na(+) and Ca(+) (Na(i)(+) and Ca(i)(2+)). Na(+)/Ca(2+) exchange activity was measured by the giant excised patch-clamp technique with conditions chosen to maximize the extent of Na(+)- and Ca(2+)-dependent ionic regulation so that the effects of variables such as pulse frequency and duration could be optimally discerned. We demonstrate that increasing the frequency or duration of solution pulses leads to a progressive decline in pure outward, but not pure inward, Na(+)/Ca(2+) exchange current. However, when the exchanger is permitted to alternate between inward and outward transport modes, both current modes exhibit substantial levels of inactivation. Changes in regulatory Ca(2+), or exposure of patches to limited proteolysis by alpha-chymotrypsin, reveal that this "coupling" is due to Na(+)-dependent inactivation originating from the outward current mode. Under physiological ionic conditions, however, evidence for modulation of exchange currents by Na(i)(+)-dependent inactivation was not apparent. The current approach provides a novel means for assessment of Na(+)/Ca(2+) exchange ionic regulation that may ultimately prove useful in understanding its role under physiological and pathophysiological conditions.  相似文献   

20.
Actin-dependent regulation of the cardiac Na(+)/Ca(2+) exchanger   总被引:1,自引:0,他引:1  
In the present study, the bovine cardiac Na+/Ca2+ exchanger (NCX1.1) was expressed in Chinese hamster ovary cells. The surface distribution of the exchanger protein, externally tagged with the hemagglutinin (HA) epitope, was associated with underlying actin filaments in regions of cell-to-cell contact and also along stress fibers. After we treated cells with cytochalasin D, NCX1.1 protein colocalized with patches of fragmented filamentous actin (F-actin). In contrast, an HA-tagged deletion mutant of NCX1.1 that was missing much of the exchanger's central hydrophilic domain (241–680) did not associate with F-actin. In cells expressing the wild-type exchanger, cytochalasin D inhibited allosteric Ca2+ activation of NCX activity as shown by prolongation of the lag phase of low Ca2+ uptake after initiation of the reverse (i.e., Ca2+ influx) mode of NCX activity. Other agents that perturbed F-actin structure (methyl--cyclodextrin, latrunculin B, and jasplakinolide) also increased the duration of the lag phase. In contrast, when reverse-mode activity was initiated after allosteric Ca2+ activation, both cytochalasin D and methyl--cyclodextrin (Me--CD) stimulated NCX activity by 70%. The activity of the (241–680) mutant, which does not require allosteric Ca2+ activation, was also stimulated by cytochalasin D and Me--CD. The increased activity after these treatments appeared to reflect an increased amount of exchanger protein at the cell surface. We conclude that wild-type NCX1.1 associates with the F-actin cytoskeleton, probably through interactions involving the exchanger's central hydrophilic domain, and that this association interferes with allosteric Ca2+ activation. cytochalasin; methyl--cyclodextrin; allosteric calcium activation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号