首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Living organisms have developed a multitude of timing mechanisms— “biological clocks.” Their mechanisms are based on either oscillations (oscillatory clocks) or unidirectional processes (hourglass clocks). Oscillatory clocks comprise circatidal, circalunidian, circadian, circalunar, and circannual oscillations—which keep time with environmental periodicities—as well as ultradian oscillations, ovarian cycles, and oscillations in development and in the brain, which keep time with biological timescales. These clocks mainly determine time points at specific phases of their oscillations. Hourglass clocks are predominantly found in development and aging and also in the brain. They determine time intervals (duration). More complex timing systems combine oscillatory and hourglass mechanisms, such as the case for cell cycle, sleep initiation, or brain clocks, whereas others combine external and internal periodicities (photoperiodism, seasonal reproduction). A definition of a biological clock may be derived from its control of functions external to its own processes and its use in determining temporal order (sequences of events) or durations. Biological and chemical oscillators are characterized by positive and negative feedback (or feedforward) mechanisms. During evolution, living organisms made use of the many existing oscillations for signal transmission, movement, and pump mechanisms, as well as for clocks. Some clocks, such as the circadian clock, that time with environmental periodicities are usually compensated (stabilized) against temperature, whereas other clocks, such as the cell cycle, that keep time with an organismic timescale are not compensated. This difference may be related to the predominance of negative feedback in the first class of clocks and a predominance of positive feedback (autocatalytic amplification) in the second class. The present knowledge of a compensated clock (the circadian oscillator) and an uncompensated clock (the cell cycle), as well as relevant models, are briefly reviewed. Hourglass clocks are based on linear or exponential unidirectional processes that trigger events mainly in the course of development and aging. An important hourglass mechanism within the aging process is the limitation of cell division capacity by the length of telomeres. The mechanism of this clock is briefly reviewed. In all clock mechanisms, thresholds at which “dependent variables” are triggered play an important role. (Chronobiology International, 18(3), 329–369, 2001)  相似文献   

2.
Increasingly timing mechanisms are detected on all levels of organisation which control the temporal order and coordination of biological processes. The respective mechanisms are designated as „biological clocks”︁. They are based on two principles: oscillations and unidirectional processes (hour‐glass). Oscillating biological clocks such as circadian,clunar or annual clocks coordinate biological events with respect to certain time points (phases)of external daily, lunar or annual hanges in the environment, while hourglass mechanisms mainly determine the duration of steps in development or aging.Complex biological timing mechanisms may comprise endogenous clocks and hourglass processes as well as external signals. Timing of biological events is often coupled with reaching defined thresholds within the underlying clock mechanism.  相似文献   

3.
Eukaryotic circadian clocks are based on self-sustaining, cell-autonomous oscillatory feedback loops that can synchronize with the environment via recurrent stimuli (zeitgebers) such as light. The components of biological clocks and their network interactions are becoming increasingly known, calling for a quantitative understanding of their role for clock function. However, the development of data-driven mathematical clock models has remained limited by the lack of sufficiently accurate data. Here we present a comprehensive model of the circadian clock of Neurospora crassa that describe free-running oscillations in constant darkness and entrainment in light-dark cycles. To parameterize the model, we measured high-resolution time courses of luciferase reporters of morning and evening specific clock genes in WT and a mutant strain. Fitting the model to such comprehensive data allowed estimating parameters governing circadian phase, period length and amplitude, and the response of genes to light cues. Our model suggests that functional maturation of the core clock protein Frequency causes a delay in negative feedback that is critical for generating circadian rhythms.  相似文献   

4.
5.
6.
Circadian clocks are intracellular molecular mechanisms that allow the cell to anticipate the time of day. We have previously reported that the intact rat heart expresses the major components of the circadian clock, of which its rhythmic expression in vivo is consistent with the operation of a fully functional clock mechanism. The present study exposes oscillations of circadian clock genes [brain and arylhydrocarbon receptor nuclear translocator-like protein 1 (bmal1), reverse strand of the c-erbaalpha gene (rev-erbaalpha), period 2 (per2), albumin D-element binding protein (dbp)] for isolated adult rat cardiomyocytes in culture. Acute (2 h) and/or chronic (continuous) treatment of cardiomyocytes with FCS (50% and 2.5%, respectively) results in rhythmic expression of circadian clock genes with periodicities of 20-24 h. In contrast, cardiomyocytes cultured in the absence of serum exhibit dramatically dampened oscillations in bmal1 and dbp only. Zeitgebers (timekeepers) are factors that influence the timing of the circadian clock. Glucose, which has been previously shown to reactivate circadian clock gene oscillations in fibroblasts, has no effect on the expression of circadian clock genes in adult rat cardiomyocytes, either in the absence or presence of serum. Exposure of adult rat cardiomyocytes to the sympathetic neurotransmitter norephinephrine (10 microM) for 2 h reinitiates rhythmic expression of circadian clock genes in a serum-independent manner. Oscillations in circadian clock genes were associated with 24-h oscillations in the metabolic genes pyruvate dehydrogenase kinase 4 (pdk4) and uncoupling protein 3 (ucp3). In conclusion, these data suggest that the circadian clock operates within the myocytes of the heart and that this molecular mechanism persists under standard cell culture conditions (i.e., 2.5% serum). Furthermore, our data suggest that norepinephrine, unlike glucose, influences the timing of the circadian clock within the heart and that the circadian clock may be a novel mechanism regulating myocardial metabolism.  相似文献   

7.
8.
Eggs and early embryos appear to be programmed to undertake particular developmental decisions at characteristic times, although precisely how these decisions are timed is unknown. We discuss the possible roles and interactions during early vertebrate development of two broad categories of timers: 1) those that involve cyclic or sequential mechanisms, referred to as clocks; and 2) those that require an increase or decrease in some factor to a threshold level for progression of time, referred to as hourglass timers. It is concluded that both clock-like timers linked to various features of the cell cycle and hourglass timers are involved in early developmental timing. The possible involvement of elements of circadian clock timers is also considered. BioEssays 22:57-63, 2000.  相似文献   

9.
10.
Circadian clocks generate daily rhythms in molecular, cellular, and physiological functions providing temporal dimension to organismal homeostasis. Recent evidence suggests two‐way relationship between circadian clocks and aging. While disruption of the circadian clock leads to premature aging in animals, there is also age‐related dampening of output rhythms such as sleep/wake cycles and hormonal fluctuations. Decay in the oscillations of several clock genes was recently reported in aged fruit flies, but mechanisms underlying these age‐related changes are not understood. We report that the circadian light–sensitive protein CRYPTOCHROME (CRY) is significantly reduced at both mRNA and protein levels in heads of old Drosophila melanogaster. Restoration of CRY using the binary GAL4/UAS system in old flies significantly enhanced the mRNA oscillatory amplitude of several genes involved in the clock mechanism. Flies with CRY overexpressed in all clock cells maintained strong rest/activity rhythms in constant darkness late in life when rhythms were disrupted in most control flies. We also observed a remarkable extension of healthspan in flies with elevated CRY. Conversely, CRY‐deficient mutants showed accelerated functional decline and accumulated greater oxidative damage. Interestingly, overexpression of CRY in central clock neurons alone was not sufficient to restore rest/activity rhythms or extend healthspan. Together, these data suggest novel anti‐aging functions of CRY and indicate that peripheral clocks play an active role in delaying behavioral and physiological aging.  相似文献   

11.
12.
Circadian clocks coordinate physiological, neurological, and behavioral functions into circa 24 hour rhythms, and the molecular mechanisms underlying circadian clock oscillations are conserved from Drosophila to humans. Clock oscillations and clock-controlled rhythms are known to dampen during aging; additionally, genetic or environmental clock disruption leads to accelerated aging and increased susceptibility to age-related pathologies. Neurodegenerative diseases, such as Alzheimer''s disease (AD), are associated with a decay of circadian rhythms, but it is not clear whether circadian disruption accelerates neuronal and motor decline associated with these diseases. To address this question, we utilized transgenic Drosophila expressing various Amyloid-β (Aβ) peptides, which are prone to form aggregates characteristic of AD pathology in humans. We compared development of AD-like symptoms in adult flies expressing Aβ peptides in the wild type background and in flies with clocks disrupted via a null mutation in the clock gene period (per01). No significant differences were observed in longevity, climbing ability and brain neurodegeneration levels between control and clock-deficient flies, suggesting that loss of clock function does not exacerbate pathogenicity caused by human-derived Aβ peptides in flies. However, AD-like pathologies affected the circadian system in aging flies. We report that rest/activity rhythms were impaired in an age-dependent manner. Flies expressing the highly pathogenic arctic Aβ peptide showed a dramatic degradation of these rhythms in tune with their reduced longevity and impaired climbing ability. At the same time, the central pacemaker remained intact in these flies providing evidence that expression of Aβ peptides causes rhythm degradation downstream from the central clock mechanism.  相似文献   

13.
14.
15.
Rhythms abound in biological systems, particularly at the cellular level where they originate from the feedback loops present in regulatory networks. Cellular rhythms can be investigated both by experimental and modeling approaches, and thus represent a prototypic field of research for systems biology. They have also become a major topic in synthetic biology. We review advances in the study of cellular rhythms of biochemical rather than electrical origin by considering a variety of oscillatory processes such as Ca++ oscillations, circadian rhythms, the segmentation clock, oscillations in p53 and NF-κB, synthetic oscillators, and the oscillatory dynamics of cyclin-dependent kinases driving the cell cycle. Finally we discuss the coupling between cellular rhythms and their robustness with respect to molecular noise.  相似文献   

16.
17.
18.
19.
Cellular circadian pacemaking and the role of cytosolic rhythms   总被引:3,自引:0,他引:3  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号