共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we describe the synthesis of a cDNA library from the vegetative shoot apical meristem and the analysis of clones selected from it. Using in situ hybridization, we characterized the patterns of expression of these genes in the tomato shoot apical meristem, as well as the patterns obtained from other sources. The results from the analysis of 15 cDNAs indicated the following six main patterns of gene expression in the shoot apical meristem: overall expression, zero expression, expression limited to the epidermis, expression excluded from the epidermis, punctate expression, and expression elevated in the flanks of the meristem. The patterns observed and the nature and number of the genes showing these patterns necessitate a reinterpretation of the models of meristem structure and function. In particular, the data suggest a compartmentation within the shoot apical meristem based on the spatial expression of particular subsets of genes. This paper also reports on the specific and precise criteria essential for the correct identification of meristem-specific gene expression. The data give new insight into the molecular organization of the shoot apical meristem and provide the framework for a detailed dissection of the factors controlling this organization. 相似文献
2.
Microsurgical and laser ablation analysis of leaf positioning and dorsoventral patterning in tomato 总被引:7,自引:0,他引:7
Leaves are arranged according to regular patterns, a phenomenon referred to as phyllotaxis. Important determinants of phyllotaxis are the divergence angle between successive leaves, and the size of the leaves relative to the shoot axis. Young leaf primordia are thought to provide positional information to the meristem, thereby influencing the positioning of new primordia and hence the divergence angle. On the contrary, the meristem signals to the primordia to establish their dorsoventral polarity, which is a prerequisite for the formation of a leaf blade. These concepts originate from classical microsurgical studies carried out between the 1920s and the 1970s. Even though these techniques have been abandoned in favor of genetic analysis, the resulting insights remain a cornerstone of plant developmental biology. Here, we employ new microsurgical techniques to reassess and extend the classical studies on phyllotaxis and leaf polarity. Previous experiments have indicated that the isolation of an incipient primordium by a tangential incision caused a change of divergence angle between the two subsequent primordia, indicating that pre-existing primordia influence further phyllotaxis. Here, we repeat these experiments and compare them with the results of laser ablation of incipient primordia. Furthermore, we explore to what extent the different pre-existing primordia influence the size and position of new organs, and hence phyllotaxis. We propose that the two youngest primordia (P1 and P2) are sufficient for the approximate positioning of the incipient primordium (I1), and therefore for the perpetuation of the generative spiral, whereas the direct contact neighbours of I1 (P2 and P3) control its delimitation and hence its exact size and position. Finally, we report L1-specific cell ablation experiments suggesting that the meristem L1 layer is essential for the dorsoventral patterning of leaf primordia. 相似文献
3.
Models of shoot apical meristem function 总被引:4,自引:1,他引:4
4.
5.
Veit B 《Plant molecular biology》2009,69(4):397-408
Recent work on hormone mediated regulation of the SAM is reviewed, emphasizing how combinations of genetic, molecular and
modelling approaches have refined models based on classic experimental and physiological work. Special emphasis is given to
newly described mechanisms that modulate the responsiveness of specific tissues to hormones and their potential to direct
position dependent determination processes. 相似文献
6.
Wong CE Zhao YT Wang XJ Croft L Wang ZH Haerizadeh F Mattick JS Singh MB Carroll BJ Bhalla PL 《Journal of experimental botany》2011,62(8):2495-2506
Plant microRNAs (miRNAs) play crucial regulatory roles in various developmental processes. In this study, we characterize the miRNA profile of the shoot apical meristem (SAM) of an important legume crop, soybean, by integrating high-throughput sequencing data with miRNA microarray analysis. A total of 8423 non-redundant sRNAs were obtained from two libraries derived from micro-dissected SAM or mature leaf tissue. Sequence analysis allowed the identification of 32 conserved miRNA families as well as 8 putative novel miRNAs. Subsequent miRNA profiling with microarrays verified the expression of the majority of these conserved and novel miRNAs. It is noteworthy that several miRNAs* were expressed at a level similar to or higher than their corresponding mature miRNAs in SAM or mature leaf, suggesting a possible biological function for the star species. In situ hybridization analysis revealed a distinct spatial localization pattern for a conserved miRNA, miR166, and its star speciessuggesting that they serve different roles in regulating leaf development. Furthermore, localization studies showed that a novel soybean miRNA, miR4422a, was nuclear-localized. This study also indicated a novel expression pattern of miR390 in soybean. Our approach identified potential key regulators and provided vital spatial information towards understanding the regulatory circuits in the SAM of soybean during shoot development. 相似文献
7.
8.
Metabolic aspects of organogenesis in the shoot apical meristem 总被引:1,自引:0,他引:1
Fleming A 《Journal of experimental botany》2006,57(9):1863-1870
9.
A fundamental question in developmental biology is how spatial patterns are self-organized from homogeneous structures. In 1952, Turing proposed the reaction-diffusion model in order to explain this issue. Experimental evidence of reaction-diffusion patterns in living organisms was first provided by the pigmentation pattern on the skin of fishes in 1995. However, whether or not this mechanism plays an essential role in developmental events of living organisms remains elusive. Here we show that a reaction-diffusion model can successfully explain the shoot apical meristem (SAM) development of plants. SAM of plants resides in the top of each shoot and consists of a central zone (CZ) and a surrounding peripheral zone (PZ). SAM contains stem cells and continuously produces new organs throughout the lifespan. Molecular genetic studies using Arabidopsis thaliana revealed that the formation and maintenance of the SAM are essentially regulated by the feedback interaction between WUSHCEL (WUS) and CLAVATA (CLV). We developed a mathematical model of the SAM based on a reaction-diffusion dynamics of the WUS-CLV interaction, incorporating cell division and the spatial restriction of the dynamics. Our model explains the various SAM patterns observed in plants, for example, homeostatic control of SAM size in the wild type, enlarged or fasciated SAM in clv mutants, and initiation of ectopic secondary meristems from an initial flattened SAM in wus mutant. In addition, the model is supported by comparing its prediction with the expression pattern of WUS in the wus mutant. Furthermore, the model can account for many experimental results including reorganization processes caused by the CZ ablation and by incision through the meristem center. We thus conclude that the reaction-diffusion dynamics is probably indispensable for the SAM development of plants. 相似文献
10.
Stem cell regulation in the Arabidopsis shoot apical meristem 总被引:1,自引:0,他引:1
11.
Hormone interactions at the root apical meristem 总被引:1,自引:0,他引:1
Plants exhibit an amazing developmental flexibility. Plant embryogenesis results in the establishment of a simple apical-basal axis represented by apical shoot and basal root meristems. Later, during postembryonic growth, shaping of the plant body continues by the formation and activation of numerous adjacent meristems that give rise to lateral shoot branches, leaves, flowers, or lateral roots. This developmental plasticity reflects an important feature of the plant's life strategy based on the rapid reaction to different environmental stimuli, such as temperature fluctuations, availability of nutrients, light or water and response resulting in modulation of developmental programs. Plant hormones are important endogenous factors for the integration of these environmental inputs and regulation of plant development. After a period of studies focused primarily on single hormonal pathways that enabled us to understand the hormone perception and signal transduction mechanisms, it became obvious that the developmental output mediated by a single hormonal pathway is largely modified through a whole network of interactions with other hormonal pathways. In this review, we will summarize recent knowledge on hormonal networks that regulate the development and growth of root with focus on the hormonal interactions that shape the root apical meristem. 相似文献
12.
The shoot apical meristem (SAM) is a small group of dividing cells that generate all of the aerial parts of the plant. With the goal of providing a framework for the analysis of Arabidopsis meristems at the cellular level, we performed a detailed morphometric study of actively growing inflorescence apices of the Landsberg erecta and Wassilewskija ecotypes. For this purpose, cell size, spatial distribution of mitotic cells, and the mitotic index were determined in a series of optical sections made with a confocal laser scanning microscope. The results allowed us to identify zones within the inflorescence SAM with different cell proliferation rates. In particular, we were able to define a central area that was four to six cells wide and had a low mitotic index. We used this technique to compare the meristem of the wild type with the enlarged meristems of two mutants, clavata3-1 (clv3-1) and mgoun2 (mgo2). One of the proposed functions of the CLV genes is to limit cell division rates in the center of the meristem. Our data allowed us to reject this hypothesis, because the mitotic index was reduced in the inflorescence meristem of the clv3-1 mutant. We also observed a large zone of slowly dividing cells in meristems of clv3-1 seedlings. This zone was not detectable in the wild type. These results suggest that the central area is increased in size in the mutant meristem, which is in line with the hypothesis that the CLV3 gene is necessary for the transition of cells from the central to the peripheral zone. Genetic and microscopic analyses suggest that mgo2 is impaired in the production of primordia, and we previously proposed that the increased size of the mgo2 meristem could be due to an accumulation of cells at the periphery. Our morphometric analysis showed that mgo2 meristems, in contrast to those of clv3-1, have an enlarged periphery with high cell proliferation rates. This confirms that clv3-1 and mgo2 lead to meristem overgrowth by affecting different aspects of meristem function. 相似文献
13.
正In vascular plants, almost all above-ground organs are derived from the shoot apical meristem (SAM). The developmental role of the SAM has been extensively studied,especially in the model dicot plant Arabidopsis thaliana(Aichinger et al., 2012). The SAM is spatially divided into three regions: 相似文献
14.
15.
16.
The role of hormones in shoot apical meristem function 总被引:9,自引:0,他引:9
17.
Andrew J. Fleming Doina Caderas Ernst Wehrli Simon McQueen-Mason Cris Kuhlemeier 《Planta》1999,208(2):166-174
18.
Traas J Vernoux T 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2002,357(1422):737-747
The shoot apical meristem (SAM) is a group of proliferating, embryonic-type cells that generates the aerial parts of the plant. SAMs are highly organized and stable structures that can function for years or even centuries. This is in apparent contradiction to the behaviour of their constituent cells, which continuously proliferate and differentiate. To reconcile the dynamic nature of the cells with the stability of the overall system the existence of elaborate signalling networks has been proposed. This is supported by recent work suggesting that the exchange of signals between cells, rather than a rigidly predetermined genetic program, is required for the establishment and functioning of an organized meristem. Together these interactions form a stable network, set up during embryogenesis, that assures the coordination of cell behaviour throughout development. Besides meristem-specific signalling cascades such as the CLAVATA receptor kinase pathway, which controls meristem size, these interactions involve plant hormones. In particular, cytokinins and auxins are implicated in the maintenance of meristem identity and phyllotaxis, respectively. 相似文献
19.
20.
Barton MK 《Current opinion in plant biology》1998,1(1):37-42
The vegetative shoot apical meristem of seed plants is the site of new leaf and stem formation. In the past few years genes that regulate fundamental aspects of shoot growth and development have been discovered. The recent study of these genes and their products through the use of appropriate mutants has opened new doors to understanding the molecular mechanisms of shoot apical meristem function. 相似文献