首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 813 毫秒
1.
Fetal bovine bone cells synthesize bone-specific matrix proteins   总被引:3,自引:2,他引:1  
We isolated cells from both calvaria and the outer cortices of long bones from 3- to 5-mo bovine fetuses. The cells were identified as functional osteoblasts by indirect immunofluorescence using antibodies against three bone-specific, noncollagenous matrix proteins (osteonectin, the bone proteoglycan, and the bone sialoprotein) and against type 1 collagen. In separate experiments, confluent cultures of the cells were radiolabeled and shown to synthesize and secrete osteonectin, the bone proteoglycan and the bone sialoprotein by immunoprecipitation and fluorography of SDS polyacrylamide gels. Analysis of the radiolabeled collagens synthesized by the cultures showed that they produced predominantly (approximately 94%) type I collagen, with small amounts of types III and V collagens. In agreement with previous investigators who have employed the rodent bone cell system, we confirmed in bovine bone cells that (a) there was a typical cyclic AMP response to parathyroid hormone, (b) freshly isolated cells possessed high levels of alkaline phosphatase, which diminished during culture but returned to normal levels in mineralizing cultures, and (c) cells grown in the presence of ascorbic acid and beta-glycerophosphate rapidly produced and mineralized an extracellular matrix containing largely type I collagen. These results show that antibodies directed against bone-specific, noncollagenous proteins can be used to clearly identify bone cells in vitro.  相似文献   

2.
During bone remodeling, activation of resorption is followed by a cycle of formation and this ordered sequence of events has long suggested that local interactions between osteoclasts and osteoblasts are an important regulatory mechanism in bone metabolism. To study this phenomenon, we have prepared bone cells containing primarily osteoclasts by brief digestion of mice calvariae in collagenase, overnight attachment to polystyrene tissue culture flasks in serumless medium supplemented with OB (osteoblast) cell conditioned medium and subsequent growth in low serum. These OC (osteoclast) cells were found to be highly enriched in acid phosphatase activity and expressed cAMP responses to PTH (parathyroid hormone) and prostaglandin E2 but exhibited no PTH-stimulated hyaluronate synthesis in contrast to prostaglandin E2. PTH effects on hyaluronate, however, could be restored upon coculture of OC cells with OB cells (noncontact) or with OB cell conditioned medium, thereby suggesting that OB cells regulate OC cell PTH responsiveness and/or differentiation by soluble cell products secreted into the medium.  相似文献   

3.
We have shown earlier that mechanical stimulation by intermittent hydrostatic compression (IHC) promotes alkaline phosphatase and procollagen type I gene expression in calvarial bone cells. The bone matrix glycoprotein osteopontin (OPN) is considered to be important in bone matrix metabolism and cell-matrix interactions, but its role is unknown. Here we examined the effects of IHC (13 kPa) on OPN mRNA expression and synthesis in primary calvarial cell cultures and the osteoblast-like cell line MC3T3-E1. OPN mRNA expression declined during control culture of primary calvarial cells, but not MC3T3-E1 cells. IHC upregulated OPN mRNA expression in late released osteoblastic cell cultures, but not in early released osteoprogenitor-like cells. Also, in both proliferating and differentiating MC3T3-E1 cells, OPN mRNA expression and synthesis were enhanced by IHC, differentiating cells being more responsive than proliferating cells. These results suggest a role for OPN in the reaction of bone cells to mechanical stimuli. The severe loss of OPN expression in primary bone cells cultured without mechanical stimulation suggests that disuse conditions down-regulate the differentiated osteoblastic phenotype. J. Cell. Physiol. 170:174–181, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
5.
Multiple cell-cell interactions control bone morphogenesis and vascularization. We have employed a spheroidal coculture system of endothelial cells (EC) and osteoblasts (OB) to study cell contact-dependent gene regulation between these two cell types that may play a role in regulating OB differentiation and EC angiogenic properties. Coculture spheroids differentiate spontaneously to organize into a core of OB and a surface layer of endothelial cells. Individual spheroid culture of EC or OB leads to significant alterations in gene expression compared to standard monolayer culture (upregulation of Tie-2 in EC; upregulation of angiopoietin-2 in osteoblasts). More importantly, spheroidal coculture of endothelial cells and osteoblasts leads to significant changes of gene expression in both cell populations (upregulation of VEGFR-2 in EC; downregulation of VEGF, and upregulation of alkaline phosphatase in osteoblasts). These changes are dependent on cell-cell contact and are not seen in stimulation experiments with conditioned supernatants. Collectively, the data demonstrate complex bi-directional gene regulation mechanisms between EC and OB that are likely to play a critical role during OB differentiation and in controlling the properties of angiogenic EC.  相似文献   

6.
7.
Bone formation and calcification by isolated osteoblastlike cells   总被引:4,自引:3,他引:1  
Two cell populations were isolated from calvaria of chick embryos: PF cells were liberated by collagenase treatment from the periosteum, OB cells from the periosteum-free calvarium. Both populations were cultured in plastic culture dishes. After 6 d of culture, monolayers of each cell type either were scraped off the culture dishes, transplanted on the chorio-allantoic membrane of 7-d-old quail eggs, and cultured there for 6 d, or were used for biochemical experiments. OB transplants proved capable of producing calcified bone matrix, whereas PF transplants formed only fibrous tissue. Biochemically, OB cells showed high cAMP production in the presence of parathyroid hormone (PTH), whereas cAMP production was not stimulated in PF cultures. Lactate production was stimulated by PTH in both populations although somewhat differently. Citrate decarboxylation was high in OB cells and was inhibited by PTH but was low in PF cells, where it was stimulated by the same hormone. The differences in hormonal response between the two cell types made it possible to conclude that PF cultures are relatively free of OB cells. The PF contamination in OB cultures was more difficult to assess. The experiments described in this report show that the OB population contains osteoblasts or osteoblastlike cells which are, under favorable circumstances, capable of bone formation.  相似文献   

8.
Previous morphometric and biochemical studies suggested that osteoblasts develop in cultures derived from phenotypically unexpressive stage 24 chick limb mesenchymal cells. Others have shown that osteoblast expression is marked by an increase in bone-specific alkaline phosphatase activity. Our results indicate that chick limb mesenchymal cells develop alkaline phosphatase activity that is identical to that of the chick embryonic bone-specific isoenzyme. The alkaline phosphatase isozymes were partially purified from samples of chick intestine, liver, stage 38 embryonic limbs, and cultures of stage 24 limb mesenchymal cells. These tissues were separately extracted with butanol, acetone precipitated, redissolved, and passed over a DEAE-Sephacel ion-exchange column and ion-filtration column (Sephadex A-25). From the data obtained during this purification scheme, we conclude that the alkaline phosphatase from stage 38 limbs (bones) and Day 4 cultures are identical, and this activity is different from the enzyme purified from intestine and liver. The cell culture isozyme has an apparent Km, heat lability, response to specific inhibitors, electrophoretic mobility, and molecular weight similar to those of bone-specific alkaline phosphatase. These observations support the view that osteoblastic progenitor cells are present in the stage 24 limb mesenchyme and that under specific culture conditions, bone development can be uniquely observed in vitro.  相似文献   

9.
Mechanical stimulation of bone induces new bone formation invivo and increases the metabolic activity and gene expression ofosteoblasts in culture. We investigated the role of the actin cytoskeleton and actin-membrane interactions in the transmission ofmechanical signals leading to altered gene expression in cultured MC3T3-E1 osteoblasts. Application of fluid shear to osteoblasts causedreorganization of actin filaments into contractile stress fibers andinvolved recruitment of1-integrins and -actinin tofocal adhesions. Fluid shear also increased expression of two proteinslinked to mechanotransduction in vivo, cyclooxygenase-2 (COX-2) and theearly response gene product c-fos. Inhibition of actin stress fiberdevelopment by treatment of cells with cytochalasin D, by expression ofa dominant negative form of the small GTPase Rho, or by microinjectioninto cells of a proteolytic fragment of -actinin that inhibits-actinin-mediated anchoring of actin filaments to integrins at theplasma membrane each blocked fluid-shear-induced gene expression inosteoblasts. We conclude that fluid shear-induced mechanical signalingin osteoblasts leads to increased expression of COX-2 and c-Fos througha mechanism that involves reorganization of the actin cytoskeleton.Thus Rho-mediated stress fiber formation and the -actinin-dependentanchorage of stress fibers to integrins in focal adhesions may promotefluid shear-induced metabolic changes in bone cells.

  相似文献   

10.
Although load-induced mechanical signals play a key role in bone formation and maintenance of bone mass and structure, the cellular mechanisms involved in the translation of these signals are still not well understood. Recent identification of a novel flow-induced mechanosignaling pathway involving VEGF in osteoblasts and the known VEGF regulation of actin reorganization in various cell types has led us to hypothesize that fluid shear stress-induced Vegf up-regulation underlies the actin cytoskeleton adaptation observed in osteoblasts during mechanotransduction. Our results show that MC3T3-E1 cells secrete significant VEGF in response to 5 h of pulsatile fluid shear stress (PFSS; 5 dynes/cm2 at 1 Hz), whereas expression of VEGF receptors (VEGFR-1, VEGFR-2, or NRP1) is unaffected. These receptors, in particular VEGFR-2, participate in PFSS-induced VEGF release. Exposure to flow-conditioned medium or exogenous VEGF significantly induces stress fiber formation in osteoblasts that is comparable with PFSS-induced stress fiber formation, whereas VEGF knockdown abrogates this response to PFSS, thereby providing evidence that flow-induced VEGF release plays a role in actin polymerization. Using neutralizing antibodies against the receptors and VEGF isoforms, we found that soluble VEGFs, in particular VEGF164, play a crucial role in transient stress fiber formation during osteoblast mechanotransduction, most likely through VEGFR-2 and NRP1. Based on these data we conclude that flow-induced VEGF release from osteoblasts regulates osteoblast actin adaptation during mechanotransduction and that VEGF paracrine signaling may provide potent cross-talk among bone cells and endothelial cells that is essential for fracture healing, bone remodeling, and osteogenesis.  相似文献   

11.
Although osteoblasts (OB) play a key role in the hematopoietic stem cell (HSC) niche, little is known as to which specific OB lineage cells are critical for the enhancement of stem and progenitor cell function. Unlike hematopoietic cells, OB cell surface phenotypic definitions are not well developed. Therefore, to determine which OB lineage cells are most important for hematopoietic progenitor cell (HPC) function, we characterized OB differentiation by gene expression and OB function, and determined whether associations existed between OB and HPC properties. OB were harvested from murine calvariae, used immediately (fresh OB) or cultured for 1, 2, or 3 weeks prior to their co‐culture with Lin?Sca1+c‐kit+ (LSK) cells for 1 week. OB gene expression, alkaline phosphatase activity, calcium deposition, hematopoietic cell number fold increase, CFU fold increase, and fold increase of Lin?Sca1+ cells were determined. As expected, HPC properties were enhanced when LSK cells were cultured with OB compared to being cultured alone. Initial alkaline phosphatase and calcium deposition levels were significantly and inversely associated with an increase in the number of LSK progeny. Final calcium deposition levels and OB culture duration were inversely associated with all HPC parameters, while Runx2 levels were positively associated with all HPC properties. Since calcium deposition is associated with OB maturation and high levels of Runx2 are associated with less mature OB lineage cells, these results suggest that less mature OB better promote HPC proliferation and function than do more mature OB. J. Cell. Biochem. 111: 284–294, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Fu Q  Wu C  Shen Y  Zheng S  Chen R 《Journal of biomechanics》2008,41(15):3225-3228
The biomechanical characteristics of bone tissue and its cells under mechanical stress are significant for bone biomechanics research, but the mechanism of mechanotransduction is still unknown. It has been established that the actin cytoskeleton of osteoblasts plays an important role in this process. However, the structure of the actin cytoskeleton is reorganized when loaded with mechanical stress, which results in changes in cell stiffness. These phenomena suggest that an actin-cytoskeleton-induced feedback regulation mechanism may be involved in the mechanotransduction of osteoblasts, but this has not yet been proven. The aim of this study was to explore the role of LIMK2 in the reorganization of the actin cytoskeleton induced by fluid shear stress in osteoblasts by using RNA interference. Balb/c mouse primary osteoblasts were divided into four groups. Cells in Groups 1 and 3 were transfected with negative control RNA, while cells in Groups 2 and 4 were transfected with a specific siRNA designed to silence the LIMK2 gene. Twenty-four hours after transfection, cells in Groups 1 and 2 were loaded with fluid shear stress at 12 dyne/cm2 while cells in Groups 3 and 4 were not. Compared with Group 1, the mean fluorescence density of the actin cytoskeleton in the other three groups was 28.9%, 45.7%, and 33.0%, respectively. These results indicate that LIMK2 plays an important role in the reorganization of the actin cytoskeleton induced by fluid shear stress.  相似文献   

13.
Local estradiol metabolism in osteoblast- and osteoclast-like cells   总被引:4,自引:0,他引:4  
Bone is an estradiol-responsive tissue. Estrogen withdrawal during the menopause causes loss of bone mass and clinically relevant osteoporosis in a third of all women. Sufficient or impaired local production, as well as degradation of estradiol in cells present in the bone microenvironment might be an important mechanism of rescue or might contribute to the development of osteoporosis, respectively. We therefore investigated aromatase and 17β-hydroxysteroid dehydrogenase type IV (17β-HSD IV) expression in osteoblast- and osteoclast-like cells. Aromatase mRNA was increasingly expressed in myeloid THP 1 cells differentiated along the monocyte/phagocyte pathway exploiting vitamin D and either granulocyte-macrophage-stimulating factor (GMCSF) or macrophage-stimulating factor (MCSF). In long-term cultures, when sequentially exposed to vitamin D (days 0–21) and GMCSF (days 5–10) and plated on collagen, the amount of expression of aromatase mRNA steadily increased along with the increasing expression of osteopontin mRNA, ν integrin mRNA, c-fms (MCSF-receptor) mRNA and multinucleated cells developing. The conversion of estradiol from testosterone (10−7 M/1) in the supernatants of dishes mirrored changes in aromatase mRNA expression and by day 21 rose to 30,000 ng/107 cells/24 h. 17β-HSD IV mRNA expression was abundant in undifferentiated THP 1 cells and was decreased to approximately 50% by day 21. Unstimulated SV-40 immortalized fetal osteoblasts did not express aromatase mRNA, but the expression was stimulated by the addition of the phorbol ester phorbol myristate acetate (PMA). Unstimulated osteoblasts from primary cultures did not express aromatase mRNA. Osteoblast-like osteosarcoma cells MG 63 expressed faint levels of aromatase mRNA in contrast to the osteosarcoma cell line HOS 58. 17β-HSD IV mRNA was expressed in fetal osteoblasts as well as in osteoblasts from primary culture, MG 63 and HOS 58 cells. In summary, we can show the expression of estradiol metabolizing enzymes in cells which are present in the bone microenvironment. Impaired aromatase expression and/or enhanced expression of 17β-HSD IV may contribute to the pathogenesis of osteoporosis.  相似文献   

14.
Distraction osteogenesis (DO) is a limb-lengthening procedure that combines mechanical tension stress with fracture healing to provide a unique opportunity for detailed histological examination of bone formation. Osteopontin (OPN) is a multifunctional matricellular protein believed to play a key role in wound healing and cellular response to mechanical stress. We studied the expression of OPN during DO using standard immunohistochemical (IHC) staining techniques. In addition, we compared the expression of OPN to proliferation (PCNA-positive cells) in the DO gap. After 14 days of distraction in the rat, these stains revealed variations in OPN expression and its relationship to proliferation according to the cell type, tissue type, and mode of ossification examined. Fibroblast-like cells within the central fibrous area exhibited intermittent low levels of OPN, but no relationship was observed between OPN and proliferation. In areas of transchondral ossification, OPN expression was very high in the morphologically intermediate oval cells. During intramembranous ossification, osteoblasts appeared to exhibit a bimodal expression of OPN. Specifically, proliferating pre-osteoblasts expressed osteopontin, but OPN was not detected in the post-proliferative pre-osteoblasts/osteoblasts that border the new bone columns. Finally, intracellular OPN was detected in virtually all of the mature osteoblasts/osteocytes within the new bone columns, while detection of OPN in the matrix of the developing bone columns may increase with the maturity of the new bone. These results imply that the expression of OPN during DO may be more similar to that seen during embryogenesis than would be expected from other studies. Furthermore, the biphasic expression of OPN during intramembranous ossification may exemplify the protein's multi-functional role. Early expression may facilitate pre-osteoblastic proliferation and migration, while the latter downregulation may be necessary for hydroxyapatite crystal formation.  相似文献   

15.
Msx2 is believed to play a role in regulating bone development, particularly in sutures of cranial bone. In this study we investigated the effects of retroviral-mediated overexpression of Msx2 mRNA, in both sense and antisense orientations, on primary cultured chick calvarial osteoblasts. Unregulated overexpression of sense mRNA produced high levels of Msx2 protein throughout the culture period, preventing the expected fall as the cells differentiate. The continued high expression of Msx2 prevented osteoblastic differentiation and mineralization of the extracellular matrix. In contrast, expression of antisense Msx2 RNA decreased proliferation and accelerated differentiation. In other studies, we showed that the Msx2 promoter was widely expressed during the proliferative phase of mouse calvarial osteoblast cultures but was preferentially downregulated in osteoblastic nodules. These results support a model in which Msx2 prevents differentiation and stimulates proliferation of cells at the extreme ends of the osteogenic fronts of the calvariae, facilitating expansion of the skull and closure of the suture.  相似文献   

16.
Other than its known effects on the cardiovascular system, angiotensin II (Ang II) stimulates cell growth in several cell types. In this study, we examined whether it also might affect bone cell metabolism. Ang II stimulated DNA and collagen synthesis and decreased alkaline phosphatase (AP) activity in bone cell populations derived from the periosteum of fetal rat calvariae. Similar effects of Ang II were observed on human adult bone cells obtained by collagenase digestion from trabecular bone. Clonal cell analysis, autoradiographic studies, and receptor subtype analysis suggested the presence of specific Ang II receptor subtype 1 (AT1) binding sites on AP+ osteoblastic precursor cells. Ang II had no direct effects on osteoblastic cells with a mature phenotype, but paracrine effects of Ang II on mature osteoblasts could be observed upon coculture with Ang II-responsive bone cell populations. Because Ang II is known to be locally generated by endothelial cells, Ang II might play an important role in coordinating capillary cell growth and osteoblastic bone formation during bone remodeling. J. Cell. Physiol. 175:89–98, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Mechanical stimulation of bone tissue by physical activity stimulates bone formation in normal bone and may attenuate bone loss of osteoporotic patients. However, altered responsiveness of osteoblasts in osteoporotic bone to mechanical stimuli may contribute to osteoporotic bone involution. The purpose of the present study was to investigate whether osteoblasts from osteoporotic patients and normal donors show differences in proliferation and TGFβ production in responses to cyclic strain. Human osteoblasts isolated from collagenase-treated bone explants of 10 osteoporotic patients (average age 70 ± 6 yr) and 8 normal donors (average age 54 ± 10 yr) were plated into elastic rectangular silicone dishes. Subconfluent cultures were stimulated by cyclic strain (1%, 1 Hz) in an electromechanical cell stretching apparatus at three consecutive days for each 30 min. The cultures were assayed for proliferation, alkaline phosphatase activity and TGFβ release in each three parallel cultures. In all experiments, osteoblasts grown in the same elastic dishes but without mechanical stimulation served as controls. Significant differences between stimulated cultures and unstimulated controls were determined by a paired two-tailed Wilcoxon test. In comparison to the unstimulated controls, osteoblasts from normal donors significantly increased proliferation (p = 0.025) and TGFβ secretion (p = 0.009) into the conditioned culture medium. In contrast, osteoblasts from osteoporotic donors failed to increase both proliferation (p > 0.05) and TGFβ release (p > 0.05) in response to cyclic strain. Alkaline phosphatase activity was not significantly affected (p > 0.05) in normal as well as osteoporotic bone derived osteoblasts.

These findings suggest a different responsiveness to 1% cyclic strain of osteoblasts isolated from normal and osteoporotic bone that could be influenced by both the disease of osteoporosis and the higher average age of the osteoporotic patient group. While osteoblasts from osteoporotic donors failed to increase proliferation and TGFβ release under the chosen mechanical strain regimen that stimulated both parameters in normal osteoblasts, it is possible that some other strain regimen would provide more effective stimulation of osteoporotic cells.  相似文献   


18.
Osteocytes play important roles in controlling bone quality as well as preferential alignment of biological apatite c-axis/collagen fibers. However, the relationship between osteocytes and mechanical stress remains unclear due to the difficulty of three-dimensional (3D) culture of osteocytes in vitro. The aim of this study was to investigate the effect of cyclic mechanical stretch on 3D-cultured osteocyte-like cells. Osteocyte-like cells were established using rat calvarial osteoblasts cultured in a 3D culture system. Cyclic mechanical stretch (8% amplitude at a rate of 2 cycles min?1) was applied for 24, 48 and 96 consecutive hours. Morphology, cell number and preferential cell alignment were evaluated. Apoptosis- and autophagy-related gene expression levels were measured using quantitative PCR. 3D-cultured osteoblasts became osteocyte-like cells that expressed osteocyte-specific genes such as Dmp1, Cx43, Sost, Fgf23 and RANKL, with morphological changes similar to osteocytes. Cell number was significantly decreased in a time-dependent manner under non-loaded conditions, whereas cyclic mechanical stretch significantly prevented decreased cell numbers with increased expression of anti-apoptosis-related genes. Moreover, cyclic mechanical stretch significantly decreased cell size and ellipticity with increased expression of autophagy-related genes, LC3b and atg7. Interestingly, preferential cell alignment did not occur, irrespective of mechanical stretch. These findings suggest that an anti-apoptotic effect contributes to network development of osteocyte-like cells under loaded condition. Spherical change of osteocyte-like cells induced by mechanical stretch may be associated with autophagy upregulation. Preferential alignment of osteocytes induced by mechanical load in vivo may be partially predetermined before osteoblasts differentiate into osteocytes and embed into bone matrix.  相似文献   

19.
Activation of airway smooth muscle (ASM) cells plays a central role in the pathophysiology of asthma. Because ASM is an important therapeutic target in asthma, it is beneficial to develop bioengineered ASM models available for assessing physiological and biophysical properties of ASM cells. In the physiological condition in vivo, ASM cells are surrounded by extracellular matrix (ECM) and exposed to mechanical stresses such as cyclic stretch. We utilized a 3-D culture model of human ASM cells embedded in type-I collagen gel. We further examined the effects of cyclic mechanical stretch, which mimics tidal breathing, on cell orientation and expression of contractile proteins of ASM cells within the 3-D gel. ASM cells in type-I collagen exhibited a tissue-like structure with actin stress fiber formation and intracellular Ca2+ mobilization in response to methacholine. Uniaxial cyclic stretching enhanced alignment of nuclei and actin stress fibers of ASM cells. Moreover, expression of mRNAs for contractile proteins such as α-smooth muscle actin, calponin, myosin heavy chain 11, and transgelin of stretched ASM cells was significantly higher than that under the static condition. Our findings suggest that mechanical force and interaction with ECM affects development of the ASM tissue-like construct and differentiation to the contractile phenotype in a 3-D culture model.  相似文献   

20.
Since bone resorption and formation by continuous and intermittent parathyroid hormone (PTH) treatments involve various types of cells in bone, this study examined the underlying mechanism by combining culture systems using mouse primary calvarial osteoblasts and bone marrow cells. The PTH/PTHrP receptor (PTH1R) expression and the cAMP accumulation in response to PTH were increased in accordance with the differentiation of osteoblasts. Osteoclast formation was strongly induced by continuous PTH treatment in the monolayer co‐culture of osteoblasts and bone marrow cells, which was associated with RANKL expression in differentiated osteoblasts. Bone formation determined by ALP activity and the type I collagen mRNA expression was stimulated by intermittent PTH treatment in the monolayer co‐culture and in the bone marrow cell layer of the separated co‐culture in a double chamber dish, but not in the culture of bone marrow cells alone. The stimulation in the separated co‐culture, accompanied by IGF‐I production by osteoblasts, was abolished when bone marrow cells were derived from knockout mice of insulin‐receptor substrate‐1 (IRS‐1?/?) or when osteoblasts were from PTH1R?/? mice. We conclude that differentiated osteoblasts are most likely the direct target of both continuous and intermittent PTH, while bone marrow cells are likely the effector cells. The osteoblasts stimulated by continuous PTH express RANKL which causes osteoclastogenesis from the precursors in bone marrow via cell‐to‐cell contact, leading to bone resorption; while the osteoblasts stimulated by intermittent PTH secrete IGF‐I which activates IRS‐1 in osteoblast precursors in bone marrow via a paracrine mechanism, leading to bone formation. J. Cell. Biochem. 109: 755–763, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号