首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pleckstrin homology (PH) domains are 100-120 amino acid protein modules best known for their ability to bind phosphoinositides. All possess an identical core beta-sandwich fold and display marked electrostatic sidedness. The binding site for phosphoinositides lies in the center of the positively charged face. In some cases this binding site is well defined, allowing highly specific and strong ligand binding. In several of these cases the PH domains specifically recognize 3-phosphorylated phosphoinositides, allowing them to drive membrane recruitment in response to phosphatidylinositol 3-kinase activation. Examples of these PH domain-containing proteins include certain Dbl family guanine nucleotide exchange factors, protein kinase B, PhdA, and pleckstrin-2. PH domain-mediated membrane recruitment of these proteins contributes to regulated actin assembly and cell polarization. Many other PH domain-containing cytoskeletal proteins, such as spectrin, have PH domains that bind weakly, and to all phosphoinositides. In these cases, the individual phosphoinositide interactions may not be sufficient for membrane association, but appear to require self-assembly of their host protein and/or cooperation with other anchoring motifs within the same molecule to drive membrane attachment.  相似文献   

2.
PH (pleckstrin homology) domains represent the 11th most common domain in the human proteome. They are best known for their ability to bind phosphoinositides with high affinity and specificity, although it is now clear that less than 10% of all PH domains share this property. Cases in which PH domains bind specific phosphoinositides with high affinity are restricted to those phosphoinositides that have a pair of adjacent phosphates in their inositol headgroup. Those that do not [PtdIns3P, PtdIns5P and PtdIns(3,5)P2] are instead recognized by distinct classes of domains including FYVE domains, PX (phox homology) domains, PHD (plant homeodomain) fingers and the recently identified PROPPINs (b-propellers that bind polyphosphoinositides). Of the 90% of PH domains that do not bind strongly and specifically to phosphoinositides, few are well understood. One group of PH domains appears to bind both phosphoinositides (with little specificity) and Arf (ADP-ribosylation factor) family small G-proteins, and are targeted to the Golgi apparatus where both phosphoinositides and the relevant Arfs are both present. Here, the PH domains may function as coincidence detectors. A central challenge in understanding the majority of PH domains is to establish whether the very low affinity phosphoinositide binding reported in many cases has any functional relevance. For PH domains from dynamin and from Dbl family proteins, this weak binding does appear to be functionally important, although its precise mechanistic role is unclear. In many other cases, it is quite likely that alternative binding partners are more relevant, and that the observed PH domain homology represents conservation of structural fold rather than function.  相似文献   

3.
Song X  Xu W  Zhang A  Huang G  Liang X  Virbasius JV  Czech MP  Zhou GW 《Biochemistry》2001,40(30):8940-8944
The recruitment of specific cytosolic proteins to intracellular membranes through binding phosphorylated derivatives of phosphatidylinositol (PtdIns) controls such processes as endocytosis, regulated exocytosis, cytoskeletal organization, and cell signaling. Protein modules such as FVYE domains and PH domains that bind specifically to PtdIns 3-phosphate (PtdIns-3-P) and polyphosphoinositides, respectively, can direct such membrane targeting. Here we show that two representative Phox homology (PX) domains selectively bind to specific phosphatidylinositol phosphates. The PX domain of Vam7p selectively binds PtdIns-3-P, while the PX domain of the CPK PI-3 kinase selectively binds PtdIns-4,5-P(2). In contrast, the PX domain of Vps5p displays no binding to any PtdInsPs that were tested. In addition, the double mutant (Y42A/L48Q) of the PX domain of Vam7p, reported to cause vacuolar trafficking defects in yeast, has a dramatically decreased level of binding to PtdIns-3-P. These data reveal that the membrane targeting function of the Vam7p PX domain is based on its ability to associate with PtdIns-3-P, analogous to the function of FYVE domains.  相似文献   

4.
5.
6.
A fraction of Bruton's tyrosine kinase (Btk) co-localizes with actin fibers upon stimulation of mast cells via the high affinity IgE receptor (FcepsilonRI). In this study, a molecular basis of the Btk co-localization with actin fibers is presented. Btk and other Tec family tyrosine kinases have a pleckstrin homology (PH) domain at their N termini. The PH domain is a short peptide module frequently found in signal-transducing proteins and cytoskeletal proteins. Filamentous actin (F-actin) is shown to be a novel ligand for a subset of PH domains, including that of Btk. The actin-binding site was mapped to a 10-residue region of the N-terminal region of Btk. Basic residues in this short stretch are demonstrated to be involved in actin binding. Isolated PH domains induced actin filament bundle formation. Consistent with these observations, Btk binds F-actin in vitro and in vivo. Wild-type Btk protein is in part translocated to the cytoskeleton upon FcepsilonRI cross-linking, whereas Btk containing a mutated PH domain is not. Phosphatidylinositol 3,4, 5-trisphosphate-mediated membrane translocation of Btk was enhanced in cytochalasin D-pretreated, FcepsilonRI-stimulated mast cells. These data indicate that PH domain-mediated F-actin binding plays a role in Btk co-localization with actin filaments.  相似文献   

7.
Pleckstrin homology domains of tec family protein kinases.   总被引:2,自引:0,他引:2  
Pleckstrin homology (PH) domains have been shown to be involved in different interactions, including binding to inositol compounds, protein kinase C isoforms, and heterotrimeric G proteins. In some cases, the most important function of PH domains is transient localisation of proteins to membranes, where they can interact with their partners. Tec family protein tyrosine kinases contain a PH domain. In Btk, also PH domain mutations lead into an immunodeficiency, X-linked agammaglobulinemia (XLA). A new disease-causing mutation was identified in the PH domain. The structures for the PH domains of Bmx, Itk, and Tec were modelled based on Btk structure. The domains seem to have similar scaffolding and electrostatic polarisation but to have some differences in the binding regions. The models provide new insight into the specificity, function, and regulation of Tec family kinases.  相似文献   

8.
Actin is one of the most conserved proteins in nature. Its assembly and disassembly are regulated by many proteins, including the family of actin‐depolymerizing factor homology (ADF‐H) domains. ADF‐H domains can be divided into five classes: ADF/cofilin, glia maturation factor (GMF), coactosin, twinfilin, and Abp1/drebrin. The best‐characterized class is ADF/cofilin. The other four classes have drawn much less attention and very few structures have been reported. This study presents the solution NMR structure of the ADF‐H domain of human HIP‐55‐drebrin‐like protein, the first published structure of a drebrin‐like domain (mammalian), and the first published structure of GMF β (mouse). We also determined the structures of mouse GMF γ, the mouse coactosin‐like domain and the C‐terminal ADF‐H domain of mouse twinfilin 1. Although the overall fold of the five domains is similar, some significant differences provide valuable insights into filamentous actin (F‐actin) and globular actin (G‐actin) binding, including the identification of binding residues on the long central helix. This long helix is stabilized by three or four residues. Notably, the F‐actin binding sites of mouse GMF β and GMF γ contain two additional β‐strands not seen in other ADF‐H structures. The G‐actin binding site of the ADF‐H domain of human HIP‐55‐drebrin‐like protein is absent and distorted in mouse GMF β and GMF γ.  相似文献   

9.
Members of the Toll-like receptor (TLR) family are currently under intense scrutiny for their role in the sampling and recognition of pathogens. It has already been reported that both vaccinia virus and Yersinia spp. express proteins that help them evade the TLR mediated immune response, acting through the Toll-interleukin-1 receptor-resistance (TIR) domain and leucine-rich repeat region of the host TLRs respectively. The TIR domain is involved in the dimerisation of the TLRs and their complexation with their adapter molecules. We tested here the hypothesis that bacteria have the ability to secrete proteins containing similar motifs to the intracellular TIR domains that are involved in the TIR-TIR interaction necessary for the subsequent signal transmission. Based upon their sequence homology, proteins expressing TIRs have been divided into three sub-classes, based around the TLRs, the TLR adapter proteins, and the interleukin-1 and -18 adapter proteins. The highly conserved regions from these separate sub-families were then used to identify similar bacterial proteins. The bacterial proteins identified were then included in an iterative MEME-BLAST process to broaden the search. Tollip, a known TLR antagonist and adapter protein, was included in this investigation although it does not fit into any of the three sub-classes outlined above. If suitable bacterial proteins had been identified, it would signify that certain bacteria had evolved a mechanism to aid them in avoiding detection by the innate immune system acting through the TIR domains. At this stage one has to conclude that there is no evidence currently available suggesting such a mechanism, when using the strategy applied here.  相似文献   

10.
A diverse array of molecules involved in signal transduction have recently been recognised as containing a new homology domain, the pleckstrin homology (PH) domain. These include kinases (both serine/threonine and tyrosine specific), all currently known mammalian phospholipase Cs, GTPases, GTPage-activatng proteins, GTpace-exchange factors, “adapter” proteins, cyotskeletal proteins, and kinase substrates. This has sparked a new surge of research into elucidating its sturcture and function. The NMR solution structure of the PH domains of β-spectrin and pleckstrin (the N-terminal domain) both display a core consisting of seven anti-parallel β-sheet strands. The carboxy terminus is folded into a long α-helix. The molecule is electrostatically polarised and contains a pocket which may be involved in the inding of a ligand. The PH domain overall topological relatedness to the retinoid inding protein family of molecules would suggest a lipid ligand could bind to this pocket. the prime function of the PH domain still remains to be elucidated. However, it has been shown to be important in signal transduction, most probably by mediating protein-protein interactions. An extended PH domain of the β-adrenergic receptor kinase (βARK), as well as that of several other molecules, can bind to βγ subunits of the heterotrimeric G-proteins. The possibility that the PH domain, which is found in so many signalling molecules, being generally inovolved in βγ binding site appear to be concomitant in βARK, detailed analysis indicates that the PH domain is not generally a βγ binding domain. Thus, the race is on to find the ligands of each PH domain and determine a common nature to their interaction.  相似文献   

11.
Folding of secretory proteins is associated with the formation and isomerization of disulfide bonds. ERp72, a protein disulfide isomerase (PDI) family member, possesses 3 thioredoxin homology domains, but the participation of each domain in disulfide-bond formation and isomerization remains to be determined. We analyzed the function of individual domains in the insulin reduction assay system by site-directed mutagenesis with cysteine-to-serine replacement. All domains contributed to apparent steady-state binding (Km) and catalysis at saturating substrate concentrations (kcat) but in different manners. A mutant ERp72 with mutations in domains 1 and 2 (ERp72-mut-1+2) exhibited reductions in kcat of 73.9% when compared with wild type, whereas ERp72-mut-1+3 (mutations in domains 1 and 3) and ERp72-mut-2+3 (mutations in domains 2 and 3) exhibited less substantial reductions in kcat. ERp72-mut-1+3 and ERp72-mut-2+3 showed elevations in Km of 89.9% and 96.2%, respectively, when compared with wild type, whereas ERp72-mut-1+2 exhibited smaller elevations in Km. These results suggest that domains 1 and 2 make greater contributions to catalyzing efficacy and domain 3 to binding affinity. Domain 2 is involved in binding affinity, in combination with domain 3, in addition to its own contribution to catalyzing efficacy. This assignment of functions to individual domains is similar to that observed in other PDI domains, which is consistent with the high sequence homology between ERp and PDI domains.  相似文献   

12.
Lipid second messengers generated by phosphoinositide (PI) 3-kinases regulate diverse cellular functions through interaction with pleckstrin homology (PH) domains in modular signaling proteins. The PH domain of Grp1, a PI 3-kinase-activated exchange factor for Arf GTPases, selectively binds phosphatidylinositol 3,4,5-trisphosphate with high affinity. We have determined the structure of the Grp1 PH domain in the unliganded form and bound to inositol 1,3,4,5-tetraphosphate. A novel mode of phosphoinositide recognition involving a 20-residue insertion within the beta6/beta7 loop explains the unusually high specificity of the Grp1 PH domain and the promiscuous 3-phosphoinositide binding typical of several PH domains including that of protein kinase B. When compared to other PH domains, general determinants of 3-phosphoinositide recognition and specificity can be deduced.  相似文献   

13.
Philip F  Guo Y  Scarlata S 《FEBS letters》2002,531(1):28-32
Since their discovery almost 10 years ago pleckstrin homology (PH) domains have been identified in a wide variety of proteins. Here, we focus on two proteins whose PH domains play a defined functional role, phospholipase C (PLC)-beta(2) and PLCdelta(1). While the PH domains of both proteins are responsible for membrane targeting, their specificity of membrane binding drastically differs. However, in both these proteins the PH domains work to modulate the activity of their catalytic core upon interaction with either phosphoinositol lipids or G protein activators. These observations show that these PH domains are not simply binding sites tethered onto their host enzyme but are intimately associated with their catalytic core. This property may be true for other PH domains.  相似文献   

14.
The three-dimensional structures of two animoacyl-tRNA synthetases, the methionyl-tRNA synthetase from Escherichia coli (MetRS) and the tyrosyl-tRNA synthetase from Bacillus stearothermophilus (TyrRS), show a remarkable similarity over a span of about 140 amino acids. The region of homologous folding corresponds to a five-stranded parallel beta-sheet, including a mononucleotide-binding fold. One cysteine and two histidine residues that were found to be invariant in the amino acid sequences occupy similar places in the nucleotide-binding fold. In TyrRS, these residues are close to the adenylate binding site, and in MetRS to the Mg2+-ATP binding site.  相似文献   

15.
Phosphoinositide binding by the pleckstrin homology domains of Ipl and Tih1   总被引:1,自引:0,他引:1  
The Ipl protein consists of a single pleckstrin homology (PH) domain with short N- and C-terminal extensions. This protein is highly conserved among vertebrates, and it acts to limit placental growth in mice. However, its biochemical function is unknown. The closest paralogue of Ipl is Tih1, another small PH domain protein. By sequence comparisons, Ipl and Tih1 define an outlying branch of the PH domain superfamily. Here we describe phosphatidylinositol phosphate (PIP) binding by these proteins. Ipl and Tih1 bind to immobilized PIPs with moderate affinity, but this binding is weaker and more promiscuous than that of prototypical PH domains from the general receptor for phosphoinositides (GRP1), phospholipase C delta1, and dual adaptor for phosphoinositides and phosphotyrosine 1. In COS7 cells exposed to epidermal growth factor, green fluorescent protein (GFP)-Ipl and GFP-Tih1 accumulate at membrane ruffles without clearing from the cytoplasm, whereas control GFP-GRP1 translocates rapidly to the plasma membrane and clears from the cytoplasm. Ras*-Ipl and Ras*-Tih1 fusion proteins both rescue cdc25ts Saccharomyces cerevisiae, but Ras*-Ipl rescues more efficiently in the presence of phosphatidylinositol 3-kinase (PI3K), whereas PI3K-independent rescue is more efficient with Ras*-Tih1. Site-directed mutagenesis defines amino acids in the beta1-loop1-beta2 regions of Ipl and Tih1 as essential for growth rescue in this assay. Thus, Ipl and Tih1 are bona fide PH domain proteins, with broad specificity and moderate affinity for PIPs.  相似文献   

16.
Tandem calponin homology (CH) domains are well-known actin filaments (F-actin) binding motifs. There has been a continuous debate about the details of CH domain-actin interaction, mainly because atomic level structures of F-actin are not available. A recent electron microscopy study has considerably advanced our structural understanding of CH domain:F-actin complex. On the contrary, it has recently also been shown that CH domains can bind other macromolecular systems: two CH domains from separate polypeptides Ncd80, Nuf2 can form a microtubule-binding site, as well as tandem CH domains in the EB1 dimer, while the single C-terminal CH domain of alpha-parvin has been observed to bind to a alpha-helical leucin-aspartate rich motif from paxillin.  相似文献   

17.
Vav and Sos1 are Dbl family guanine nucleotide exchange factors, which activate Rho family GTPases in response to phosphatidylinositol 3-kinase products. A pleckstrin homology domain adjacent to the catalytic Dbl homology domain via an unknown mechanism mediates the effects of phosphoinositides on guanine nucleotide exchange activity. Here we tested the possibility that phosphatidylinositol 3-kinase substrates and products control an interaction between the pleckstrin homology domain and the Dbl homology domain, thereby explaining the inhibitory effects of phosphatidylinositol 3-kinase substrates and stimulatory effects of the products. Binding studies using isolated fragments of Vav and Sos indicate phosphatidylinositol 3-kinase substrate promotes the binding of the pleckstrin homology domain to the Dbl homology domain and blocks Rac binding to the DH domain, whereas phosphatidylinositol 3-kinase products disrupt the Dbl homology/pleckstrin homology interactions and permit Rac binding. Additionally, Lck phosphorylation of Vav, a known activating event, reduces the affinities between the Vav Dbl homology and pleckstrin homology domains and permits Rac binding. We also show Vav activation in cells, as monitored by phosphorylation of Vav, Vav association with phosphatidylinositol 3,4,5-trisphosphate, and Vav guanine nucleotide exchange activity, is blocked by the phosphatidylinositol 3-kinase inhibitor wortmannin. These results suggest the molecular mechanisms for activation of Vav and Sos1 require disruption of inhibitory intramolecular interactions involving the pleckstrin homology and Dbl homology domains.  相似文献   

18.
C1 domains are compact alpha/beta structural units of about 50 amino acids which tightly bind two zinc ions. These domains were first discovered as the loci of phorbol ester and diacylglycerol binding to conventional protein kinase C isozymes, which contain 2 C1 domains (C1A and C1B) in their N-terminal regulatory regions. We present a comprehensive list of 54 C1 domains occurring singly or doubly in 34 different proteins. Many C1 domains and C1 domain-containing proteins bind phorbol esters, but many others do not. By combining analysis of 54 C1 domain sequences with information from previously reported solution and crystal structure determinations and site-directed mutagenesis, profiles are derived and used to classify C1 domains. Twenty-six C1 domains fit the profile for phorbol-ester binding and are termed "typical." Twenty-eight other domains fit the profile for the overall C1 domain fold but do not fit the profile for phorbol ester binding, and are termed "atypical." Proteins containing typical C1 domains are predicted to be regulated by diacylglycerol, whereas those containing only atypical domains are not.  相似文献   

19.
20.
A sequence comparison of the two membrane-associated (MA) domains of the cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance transporter (MDR), and -factor pheromone export system (STE6) proteins, each of which are believed to contain a total of 12 transmembrane (TM) segments, reveals significant amino acid homology and length conservation in the loop regions that connect individual TM sequences. Similar structural homology is observed between these proteins, hemolysin B (HLYB) and the major histocompatibility-linked peptide transporter, HAM1, the latter two which contain a single MA domain composed of six TM segments. In addition, there are specific sequences that are conserved within the TM segments of the five different membrane proteins. This observation suggests that the folding topologies of the MA domains of MDR, STE6, and CFTR in the plasma membrane are likely to be very similar. The sequence analysis also reveals that there are three characteristic motifs (a pair of aromatic residues, LTLXXXXXXP and GXXL) that are conserved in MDR, STE6, HLYB, HAM1, but not in CFTR. We propose that although CFTR may be evolutionarily related to these other membrane proteins, it belongs to a separate subclass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号