首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has previously been reported that norspermidine, one of the unusual polyamines, is present in Vibrio species. To expand this observation, the cellular polyamine compositions of additional species and strains in the family Vibrionaceae (Vibrio, Photobacterium, Listonella, and Shewanella) as well as Aeromonas species and Plesiomonas shigelloides, which have been proposed to be excluded from Vibrionacea, were determined by using gas-liquid chromatography. Some Vibrio species previously reported were reexamined under the same conditions, and their results are included in this report. Norspermidine was detected as a major triamine in 23 of 24 Vibrio species, all of 4 Listonella species, and 3 of 5 Photobacterium species. Vibrio costicola, Photobacterium fischeri, and Photobacterium phosphoreum contained no norspermidine. Listonella species were indistinguishable from Vibrio species in their polyamine profiles. However, Schewanella putrefaciens ATCC 8071, formerly allocated in the genus Alteromonas, contained no norspermidine, and its polyamine profile was similar to those of four Aeromonas species, in which putrescine was exclusively found. Plesiomonas shigelloides was very similar to Escherichia coli in that putrescine and spermidine were predominant polyamines. Our data indicate that the occurrence of norspermidine may be very helpful as a generic marker in identification and classification of Vibrio and Listonella species. A gas-liquid chromatographic method with a nitrogen-selective detector was presented for rapid and sensitive detection of cellular norspermidine.  相似文献   

2.
A comparative study of the lipid composition of 26 strains (including type strains) of marine Gammaproteobacteria belonging to the genera Shewanella, Alteromonas, Pseudoalteromonas, Marinobacterium, Microbulbifer, and Marinobacter was carried out. The bacteria exhibited genus-specific profiles of ubiquinones, phospholipids, and fatty acids, which can serve as reliable chemotaxonomic markers for tentative identification of new isolates. The studied species of the genus Shewanella were distinguished by the presence of two types of isoprenoid quinones, namely, ubiquinones Q-7 and Q-8 and menaquinones MK-7 and MMK-7; five phospholipids typical of this genus, namely, phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), lyso-PE, and acyl-PG; and the fatty acids 15:0, 16:0, 16:1 (n-7), 17:1 (n-8), i-13:0, and i-15:0. The high level of branched fatty acids (38-45%) and the presence of eicosapentaenoic acid (4%) may serve as criteria for the identification of this genus. Unlike Shewanella spp., bacteria of the other genera contained a single type of isoprenoid quinone: Q-8 (Alteromonas, Pseudoalteromonas, Marinobacterium, and Microbulbifer) or Q-9 (Marinobacter). The phospholipid compositions of these bacteria were restricted to three components: two major phospholipids (PE and PG) and a minor phospholipid, bisphosphatidic acid (Alteromonas and Pseudoalteromonas) or DPG (Marinobacterium, Microbulbifer, and Marinobacter). The bacteria exhibited genus-specific profiles of fatty acids.  相似文献   

3.
The genus Listonella, which was recently described on the basis of 5S rRNA sequence data, was found to be of dubious value on the basis of the results of a comparison of a number of taxonomic studies involving members of the Vibrionaceae. The available data suggest that 5S rRNA sequences may be of limited taxonomic use at the intra- and intergeneric levels, at least for apparently recently evolved groups, such as the Vibrionaceae. In this light, we assessed the generic assignment of the species Listonella damsela. Phenotypic characterization of 12 strains of bacteria assigned to L. damsela, including type strain ATCC 33539, revealed a strong resemblance to members of the genus Photobacterium. All of the strains conformed to major characteristics common to all known Photobacterium species. The characteristics of these organisms included the absence of a flagellar sheath and accumulation of poly-beta-hydroxybutyrate during growth on glucose coupled with the inability to utilize DL-beta-hydroxybutyrate as a sole carbon source. On the basis of the phenotypic data, we propose that L. damsela should be reassigned to the genus Photobacterium as Photobacterium damsela comb. nov.  相似文献   

4.
A quantitative assay for sodium channel blocking toxins such as tetrodotoxin and saxitoxin has been developed for use with a microtitre plate reader. Mouse neuroblastoma cells, which die rapidly in the presence of ouabain and veratridine, were protected by tetrodotoxin; surviving cells were detected by their uptake of the vital dye Neutral red which was quantified with a microtitre plate reader at 540 nm. A sigmoidal dose response curve was obtained and tetrodotoxin concentrations were readily measured over the range 10 nM to 500 nM (3.2-160 ng/ml). With this method, sodium channel blocking toxins were detected directly, without processing or concentration, in culture supernates of several marine bacteria, including Shewanella alga, Alteromonas tetraodonis, Listonella (Vibrio) pelagia, V. alginolyticus, V. anguillarum and V. tubiashi. Culture supernates of Shewanella alga contained up to 510 ng/ml of sodium channel blocking toxin (using tetrodotoxin as a standard).  相似文献   

5.
Seventy-six presumed Shewanella putrefaciens isolates from fish, oil drillings, and clinical specimens, the type strain of Shewanella putrefaciens (ATCC 8071), the type strain of Shewanella alga (IAM 14159), and the type strain of Shewanella hanedai (ATCC 33224) were compared by several typing methods. Numerical analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell protein and ribotyping patterns showed that the strains were separated into two distinct clusters with 56% +/- 10% and 40% +/- 14% similarity for whole-cell protein profiling and ribotyping, respectively. One cluster consisted of 26 isolates with 52 to 55 mol% G + C and included 15 human isolates, mostly clinical specimens, 8 isolates from marine waters, and the type strain of S. alga. This homogeneous cluster of mesophilic, halotolerant strains was by all analyses identical to the recently defined species S. alga (U. Simidu et al., Int. J. Syst. Bacteriol, 40:331-336, 1990). Fifty-two typically psychrotolerant strains formed the other, more heterogeneous major cluster, with 43 to 47 mol% G + C. The type strain of S. putrefaciens was included in this group. The two groups were confirmed by 16S rRNA gene sequence analysis. It is concluded that the isolates must be considered two different species, S. alga and S. putrefaciens, and that most mesophilic isolates formerly identified as S. putrefaciens belong to S. alga. The ecological role and potential pathogenicity of S. alga can be evaluated only if the organism is correctly identified.  相似文献   

6.
Polyamines of the four families and the five related genera within the gamma subclass of the class Proteobacteria were analyzed by HPLC with the objective of developing a chemotaxonomic system. The production of putrescine, diaminopropane, cadaverine, and agmatine are not exactly correlated to the phylogenetic genospecies within 36 strains of the genus Aeromonas (the family Aeromonadaceae) lacking in triamines. The occurrence of norspermidine was limited but not ubiquitous within the family Vibrionaceae, including 20 strains of Vibrio, Listonella, Photobacterium, and Salinivibrio. Spermidine was not substituted for the absence of norspermidine in the family. Agmatine was detected only in Photobacterium. Salinivibrio and some strains of Vibrio were devoid of polyamines. Vibrio ("Moritella") marinus contained cadaverine. Within the family Pasteurellaceae, Haemophilus contained cadaverine only and Actinobacillus contained no polyamine. Halomonas, Chromohalobacter, and Zymobacter, belonging to the family Halomonadaceae, ubiquitously contained spermidine and sporadically cadaverine and agmatine. Shewanella contained putrescine and cadaverine; Alteromonas macleodii, putrescine, 2-hydroxyputrescine, cadaverine, 2-hydroxyspermidine, and spermidine; Pseudoalteromonas, putrescine, cadaverine, and spermidine; Marinobacter, spermidine; and Marinomonas, putrescine and spermidine. Their polyamine profiles serve as a chemotaxonomic marker within the gamma subclass.  相似文献   

7.
A preliminary study of the use of Colilert for water quality monitoring   总被引:2,自引:0,他引:2  
Substrate specificities of proteases produced by two putrefactive marine bacteria, Shewanella putrefaciens and Alteromonas haloplanktis , were surveyed by using peptidyl-7-amino-4-methylcoumarin (MCA-substrates). Shewanella putrefaciens produced trypsin-like enzyme(s) showing broad spectrum specificity and chymotrypsin-like enzyme specifically hydrolysing Glt-Gly-Gly-Phe-MCA. Alteromonas haloplanktis produced high activity of ammopeptidase and trypsin-like enzyme(s) preferring Z-Phe-Arg-MCA, Bz-Arg-MCA and Boc-Leu-Ser-Thr-Arg-MCA. The two organisms would be able to utilize different proteins for their growth.  相似文献   

8.
A numerical taxonomic study was performed on 245 strains of heterotrophic, aerobic, marine bacteria, plus 26 reference strains. The isolates were obtained from oysters and seawater sampled monthly over one year, by direct plating on Marine Agar. The strains were characterised by 93 morphological, biochemical, physiological and nutritional tests. Clustering yielded 46 phena at 0.60 S level (SJ coefficient). Some could be identified as species of Alteromonas, Shewanella, Deleya, Flavobacterium, Oceanospirillum, Pseudomonas and marine Agrobacterium-like organisms, others were unidentified groups. Several phena seem to correspond to as yet undescribed taxa.  相似文献   

9.
The taxonomic positions of two actinomycetes, strains Bc663 and 10bc312T, provisionally assigned to the genus Rhodococcus were determined using a combination of genotypic and phenotypic properties. The organisms have phenotypic properties typical of members of the genus Rhodococcus and were assigned to the 16S rRNA subgroup which contains Rhodococcus rhodochrous and closely related species. The two strains, which have many phenotypic features in common, belong to the same genomic species albeit one readily separated from Rhodococcus ruber with which they form a distinct phyletic line. The organisms were also distinguished from all of the species classified in the R. rhodochrous subgroup, including R. ruber, using a combination of phenotypic properties. The genotypic and phenotypic data show that strains Bc663 and 10bc312T merit recognition as a new species of Rhodococcus. The name proposed for the new species is Rhodococcus aetherivorans (10bc312T = DSM 44752T = NCIMB 13964T).  相似文献   

10.
Although bacteria of the genus Shewanella belong to one of the readily cultivable groups of "Gammaproteobacteria", little is known about the occurrence and abundance of these microorganisms in the marine ecosystem. Studies revealed that of 654 isolates obtained from marine invertebrates (ophiuroid Amphiopholis kochii, sipuncula Phascolosoma japonicum, and holothurian Apostichopus japonicus, Cucumaria japonica), seawater and sediments of the North-West Pacific Ocean (i.e. the Sea of Japan and Iturup Is, Kurile Islands), 10.7% belonged to the genus Shewanella. The proportion of viable Shewanella species varied from 4% to 20% depending on the source of isolation. From the isolation study, representative strains of different phenotypes (from seventy presumptive Shewanella strains) were selected for detailed characterization using phenotypic, chemotaxonomic, and phylogenetic testing. 16S rDNA sequence-based phylogenetic analysis confirmed the results of tentative identification and placed the majority of these strains within only a few species of the genus Shewanella with 98-99% of 16S rDNA sequences identity mainly with S. japonica and S. colwelliana, suggesting that the strains studied might belong to these species. Numerically dominant strains of S. japonica were metabolically active and produced proteinases (gelatinases, caseinases), lipases, amylases, agarases, and alginases. Shewanella strains studied demonstrated weak antimicrobial and antifungal activities that might be an indication of their passive role in the colonization on living and non-living surfaces.  相似文献   

11.
We performed hybridizations between labeled rRNAs from seven representative members of the family Pasteurellaceae and from three other taxa on the one hand and DNAs from 53 strains known or presumed to belong to the Pasteurellaceae on the other hand. The members of the Pasteurellaceae are most closely related to members of the Enterobacteriaceae, the Vibrionaceae, the Aeromonadaceae, and the genus Alteromonas. The family Pasteurellaceae is very heterogeneous. There are at least seven rRNA branches. Several organisms with the same genus name are dispersed over the entire dendrogram. The "Histophilus ovis," [Haemophilus] ducreyi, [Actinobacillus] actinomycetemcomitans, and [Haemophilus] aphrophilus rRNA branches are separate and quite remote from the three authentic genera in this family; this might justify eventual later separate generic status. DNA-rRNA hybridization with suitable, labeled rRNA probes is an excellent method to establish whether an organism belongs in the Pasteurellaceae; e.g., some strains of Bisgaard's taxa 7, 13, and 16 and of the gas-producing "SP" group certainly belong in this family, whereas three bovine lymphangitis organisms (strains NCTC 10547, NCTC 10549, and NCTC 10553), [Haemophilus] piscium ATCC 10801T (T = type strain), and [Pasteurella] piscicida ATCC 17911 belong in the Enterobacteriaceae, the Aeromonadaceae, and the Vibrionaceae, respectively.  相似文献   

12.
In this study, an existing probe was used as a polymerase chain reaction (PCR) primer to study iron-reducing members of the genus Shewanella in a minerotrophic wetland where iron reduction had previously been implicated. The probe was found to be non-specific and a new set of PCR primers were developed that were specific for Shewanella. These primers were used to analyse the wetland iron-reducing communities by characterizing 16S rRNA genes amplified from DNA extracted from peat. Polymerase chain reaction clone libraries were screened using restriction fragment length polymorphism and diagnostic operational taxonomic units for Shewanella species were identified. A statistical method was used to determine the coverage of the clone libraries, which was found to be between 83% and 97%. The dominant species in the wetland samples at two geochemically distinct zones were phylogenetically related to the iron-reducing microorganism Shewanella oneidensis.  相似文献   

13.
This paper deals with the morphology and life cycle of a new species of Dysmorphococcus oblatus Yu et Wei (Phacotaceae, Volvocales) from Africa. The alga seems to be morphologically rather distinct from the other members (lorica, protoplast and number of pyrenoid). Moreover, a comparison is made of overall morphological and reproductive characteristics of the present taxon with the other 8 known species of this genus. The cultural experiment of the life cycle of this alga reveals certain attributes unrecorded for early described species of this genus. The alga is homothallic, and heterogametic and sexual reproduc-tion produces 32-64 male gametes and 2 female gametes.  相似文献   

14.
Bacterial diversity among marine creatures, especially molluscs, as a source for searching out novel lineages of bacteria, was studied. Marine creatures were collected at the coasts of the Kanto area in Japan. A total of 116 strains of bacteria were isolated from the intestines of 19 species of marine creatures includings molluscs, pisces and protochordata. Partial sequencing of 16S rDNA revealed that most of the isolates belonged to the gamma subclass of the Proteobacteria and Cytophaga-Flavobacterium-Bacteroides group. The BLAST searches revealed that the complete 16S rDNA sequence of 17 strains out of 116 isolates showed less than 94% similarity with 16S rDNA sequences deposited in the database. Four strains out of the 17 isolates belonged to the Rhodobacter group, 8 strains to the Alteromonas group, and the remaining 5 strains to the Cytophaga-Flavobacterium-Bacteroides group. Phylogenetic positions of 6 strains belonging to the Alteromonas group, which were isolated from different marine creatures, were close to each other, and represented a novel 16S rDNA lineage within the gamma subclass of Proteobacteria. Therefore, it may be inferred that these 6 strains belong to a new genus of Proteobacteria. Phylogenetic positions of the other strains are also independent from neighboring taxa, and they were suggested to respectively form a novel lineage. From these results, it is clear that the biodiversity of bacteria in marine creatures is much wider than was previously thought, and unknown microbiological resources are buried in these organisms.  相似文献   

15.
Many species of the bacterial Shewanella genus are notable for their ability to respire in anoxic environments utilizing insoluble minerals of Fe(III) and Mn(IV) as extracellular electron acceptors. In Shewanella oneidensis, the process is dependent on the decahaem electron-transport proteins that lie at the extracellular face of the outer membrane where they can contact the insoluble mineral substrates. These extracellular proteins are charged with electrons provided by an inter-membrane electron-transfer pathway that links the extracellular face of the outer membrane with the inner cytoplasmic membrane and thereby intracellular electron sources. In the present paper, we consider the common structural features of two of these outer-membrane decahaem cytochromes, MtrC and MtrF, and bring this together with biochemical, spectroscopic and voltammetric data to identify common and distinct properties of these prototypical members of different clades of the outer-membrane decahaem cytochrome superfamily.  相似文献   

16.
The genus Shewanella is one of the typical deep-sea bacterial genera. Two isolated deep-sea Shewanella species, Shewanella benthica and Shewanella violacea, were found to be able to grow better under high hydrostatic pressure conditions than at atmospheric pressure. These species are not only piezophilic (barophilic), but also psychrophilic. Many psychrophilic and psychrotolerant Shewanella species have been isolated and characterized from cold environments, such as seawater in Antarctica or the North Sea. Some of these cold-adapted Shewanella were shown to be piezotolerant, meaning that growth occurs in a high-pressure habitat. In this review, we propose that two major sub-genus branches of the genus Shewanella should be recognized taxonomically, one group characterized as high-pressure cold-adapted species that produce substantial amounts of eicosapentaenoic acid, and the other group characterized as mesophilic pressure-sensitive species.  相似文献   

17.
A collection of 169 strains, including 91 obtained from cases of gastroenteritis and 41 from localized tissue infections and infections of the eye and ear, was submitted to an extensive nutritional, physiological, and morphological characterization. The nutritional and physiological data obtained from these strains, as well as data for strains of other species of the genus Beneckea, were submitted to a numerical analysis which grouped the strains into clusters on the basis of phenotypic similarity. Strains from cases of gastroenteritis formed a group of three clusters which linked at a similarity value of 68%. These three clusters could not, however, be separated from each other by universally positive or negative traits, and on the basis of their overall phenotypic similarity were assigned to a single species, B. parahaemolytica. The majority of the strains from human, nonenteric sources segregated into two distinct clusters, one designated B. alginolytica and the other unassigned with respect to species (group C-2). B. parahaemolytica, B. alginolytica, and group C-2 could be readily distinguished from one another as well as from the remaining species of the genus Beneckea by multiple, unrelated, phenotypic traits. Activities of selected enzymes of glucose and gluconate catabolism in cell-free extracts of B. parahaemolytica, B. alginolytica, and group C-2 suggested that these organisms utilized glucose primarily via the Embden-Meyerhof pathway and gluconate primarily via the Entner-Doudoroff pathway. Similar results were observed in the other members of the genus Beneckea.  相似文献   

18.
Shewanella putrefaciens has been considered the main spoilage bacteria of low-temperature stored marine seafood. However, psychrotropic Shewanella have been reclassified during recent years, and the purpose of the present study was to determine whether any of the new Shewanella species are important in fish spoilage. More than 500 H2S-producing strains were isolated from iced stored marine fish (cod, plaice, and flounder) caught in the Baltic Sea during winter or summer time. All strains were identified as Shewanella species by phenotypic tests. Different Shewanella species were present on newly caught fish. During the warm summer months the mesophilic human pathogenic S. algae dominated the H2S-producing bacterial population. After iced storage, a shift in the Shewanella species was found, and most of the H2S-producing strains were identified as S. baltica. The 16S rRNA gene sequence analysis confirmed the identification of these two major groups. Several isolates could only be identified to the genus Shewanella level and were separated into two subgroups with low (44%) and high (47%) G+C mol%. The low G+C% group was isolated during winter months, whereas the high G+C% group was isolated on fish caught during summer and only during the first few days of iced storage. Phenotypically, these strains were different from the type strains of S. putrefaciens, S. oneidensis, S. colwelliana, and S. affinis, but the high G+C% group clustered close to S. colwelliana by 16S rRNA gene sequence comparison. The low G+C% group may constitute a new species. S. baltica, and the low G+C% group of Shewanella spp. strains grew well in cod juice at 0 degrees C, but three high G+C Shewanella spp. were unable to grow at 0 degrees C. In conclusion, the spoilage reactions of iced Danish marine fish remain unchanged (i.e., trimethylamine-N-oxide reduction and H2S production); however, the main H2S-producing organism was identified as S. baltica.  相似文献   

19.
20.
Urealytic strains of coryneform bacteria that are designated Corynebacterium group D2 and are isolated from human urine are a cause of urinary tract infections. Cell wall and lipid analyses confirmed that these organisms are members of the genus Corynebacterium but can be separated from other species in the genus on the basis of DNA base composition and DNA-DNA hybridization values. Biochemically, strains in this taxon can be distinguished from other Corynebacterium spp. by their failure to produce acid from carbohydrates, by their failure to reduce nitrates, and by their ability to hydrolyze urea. We regard these bacteria as a new species of the genus Corynebacterium and propose the name Corynebacterium urealyticum. The type strain is strain NCTC 12011 (= ATCC 43042).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号