首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two major lysine tRNAs from rat liver, tRNA2Lys and tRNA5Lys, were sequenced by rapid gel or chromatogram readout methods. The major tRNA2Lys differs from a minor form only by a base pair in positions 29 and 41; both tRNAs have an unidentified nucleotide, U**, in the third position of the anticodon. Although highly related, the major tRNA2Lys and tRNA5Lys differ in four base pairs and four unpaired nucleotides, including the first position of the anticodons, but have the same base pair in positions 29 and 41. The three tRNAs maintain a m2G-U pair in the acceptor stem. Detection of this m2G is in contrast to other reports of lysine tRNAs. Sequences of lysine tRNAs are strongly conserved in higher eukaryotes.  相似文献   

2.
I Hayashi  G Kawai    K Watanabe 《Nucleic acids research》1997,25(17):3503-3507
By replacing a stretch of five A-U base pairs in the acceptor stem with G-C pairs, mitochondrial tRNA-SerGCU lacking a D arm could be expressed in Escherichia coli cells in considerable amounts. The expressed tRNA with no modified nucleoside was serylated in vitro with the mitochondrial enzyme. The tRNASerGCU derivatives carrying identity elements for alanine tRNA and the related anticodons were expressed. However, this expression event did not affect cell growth, probably because the expression started from the late log phase, which suggests that these mitochondrial tRNA derivatives are not involved in E.coli gene expression systems. Although there are some restrictions in the secondary structure of tRNAs that can be expressed by this method, it could prove useful for preparing large amounts of heterologous tRNAs in vivo.  相似文献   

3.
The anticodon-independent aminoacylation of RNA hairpin helices that reconstruct tRNA acceptor stems has been demonstrated for at least 10 aminoacyl-tRNA synthetases. For Escherichia coli cysteine tRNA synthetase, the specificity of aminoacylation of the acceptor stem is determined by the U73 nucleotide adjacent to the amino acid attachment site. Because U73 is present in all known cysteine tRNAs, we investigated the ability of the E. coli cystein enzyme to aminoacylate a heterologous acceptor stem. We show here that a minihelixCys based on the acceptor-T psi C stem of yeast tRNACys is a substrate for the E. coli enzyme, and that aminoacylation of this minihelix is dependent on U73. Additionally, we identify two base pairs in the acceptor stem that quantitatively convert the E. coli acceptor stem to the yeast acceptor stem. The influence of U73 and these two base pairs is completely retained in the full-length tRNA. This suggests a conserved relationship between the acceptor stem alone and the acceptor stem in the context of a tRNA for aminoacylation with cysteine. However, the primary determinant in the species-specific aminoacylation of the E. coli and yeast cysteine tRNAs is a tertiary base pair at position 15:48 outside of the acceptor stem. Although E. coli tRNACys has an unusual G15:G48 tertiary base pair, yeast tRNACys has a more common G15:C48 that prevents efficient aminoacylation of yeast tRNACys by the E. coli enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Identity determinants of E. coli tryptophan tRNA.   总被引:4,自引:4,他引:0       下载免费PDF全文
  相似文献   

5.
Initiator tRNAs are used exclusively for initiation of protein synthesis and not for elongation. We show that both Escherichia coli and eukaryotic initiator tRNAs have negative determinants, at the same positions, that block their activity in elongation. The primary negative determinant in E. coli initiator tRNA is the C1xA72 mismatch at the end of the acceptor stem. The primary negative determinant in eukaryotic initiator tRNAs is located in the TPsiC stem, whereas a secondary negative determinant is the A1:U72 base pair at the end of the acceptor stem. Here we show that E. coli initiator tRNA also has a secondary negative determinant for elongation and that it is the U50.G64 wobble base pair, located at the same position in the TPsiC stem as the primary negative determinant in eukaryotic initiator tRNAs. Mutation of the U50.G64 wobble base pair to C50:G64 or U50:A64 base pairs increases the in vivo amber suppressor activity of initiator tRNA mutants that have changes in the acceptor stem and in the anticodon sequence necessary for amber suppressor activity. Binding assays of the mutant aminoacyl-tRNAs carrying the C50 and A64 changes to the elongation factor EF-Tu.GTP show marginally higher affinity of the C50 and A64 mutant tRNAs and increased stability of the EF-Tu.GTP. aminoacyl-tRNA ternary complexes. Other results show a large effect of the amino acid attached to a tRNA, glutamine versus methionine, on the binding affinity toward EF-Tu.GTP and on the stability of the EF-Tu.GTP.aminoacyl-tRNA ternary complex.  相似文献   

6.
U Burkard  D S?ll 《Nucleic acids research》1988,16(24):11617-11624
The nucleotide sequence of the gene encoding the Escherichia coli selenocysteine tRNA (tRNA(SeCys] predicts an unusually long acceptor stem of 8 base pairs (one more than other tRNAs). Here we show by in vivo experiments (Northern blots, primer extension analysis) and by in vitro RNA processing studies that E. coli tRNA(SeCys) does contain this additional basepair, and that its formation results from abnormal cleavage by RNase P.  相似文献   

7.
A Schn  A Bck  G Ott  M Sprinzl    D Sll 《Nucleic acids research》1989,17(18):7159-7165
Selenocysteine is cotranslationally incorporated into selenoproteins in a unique pathway involving tRNA mediated suppression of a UGA nonsense codon (1-3). The DNA sequence of the gene for this suppressor tRNA from Escherichia coli predicts unusual features of the gene product (4). We determined the sequence of this serine tRNA (tRNA(UCASer]. It is the longest tRNA (95 nt) known to date with an acceptor stem of 8 base pairs and lacks some of the 'invariant' nucleotides found in other tRNAs. It is the first E. coli tRNA that contains the hypermodified nucleotide i6A, adjacent to the UGA-recognizing anticodon UCA. The implications of the unusual structure and modification of this tRNA on recognition by seryl-tRNA synthetase, by tRNA modifying enzymes, and on codon recognition are discussed.  相似文献   

8.
The absence of a Watson-Crick base pair at the end of the amino acid acceptor stem is one of the features which distinguishes prokaryotic initiator tRNAs as a class from all other tRNAs. We show that this structural feature prevents Escherichia coli initiator tRNA from acting as an elongator in protein synthesis in vivo. We generated a mutant of E. coli initiator tRNA in which the anticodon sequence is changed from CAU to CUA (the T35A36 mutant). This mutant tRNA has the potential to read the amber termination codon UAG. We then coupled this mutation to others which change the C1.A72 mismatch at the end of the acceptor stem to either a U1:A72 base pair (T1 mutant) or a C1:G72 base pair (G72 mutant). Transformation of E. coli CA274 (HfrC Su- lacZ125am trpEam) with multicopy plasmids carrying the mutant initiator tRNA genes show that mutant tRNAs carrying changes in both the anticodon sequence and the acceptor stem suppress amber codons in vivo, whereas mutant tRNA with changes in the anticodon sequence alone does not. Mutant tRNAs with the above anticodon sequence change are aminoacylated with glutamine in vitro. Measurement of kinetic parameters for aminoacylation by E. coli glutaminyl-tRNA synthetase show that both the nature of the base pair at the end of the acceptor stem and the presence or absence of a base pair at this position can affect aminoacylation kinetics. We discuss the implications of this result on recognition of tRNAs by E. coli glutaminyl-tRNA synthetase.  相似文献   

9.
On the basis of enzymatic probing and phylogenetic comparison, we have previously proposed that mammalian mitochondrial tRNA(sSer) (anticodon UGA) possess a slightly altered cloverleaf structure in which only one nucleotide exists between the acceptor stem and D stem (usually two nucleotides) and the anticodon stem consists of six base pairs (usually five base pairs) [Yokogawa et al. (1991) Nucleic Acids Res. 19, 6101-6105]. To ascertain whether such tRNA(sSer) can be folded into a normal L-shaped tertiary structure, the higher-order structure of bovine mitochondrial tRNA(SerUGA) was examined by chemical probing using dimethylsulfate and diethylpyrocarbonate, and on the basis of the results a tertiary structure model was obtained by computer modeling. It was found that a one-base-pair elongation in the anticodon stem was compensated for by multiple-base deletions in the D and extra loop regions of the tRNA(SerUGA), which resulted in preservation of an L-shaped tertiary structure similar to that of conventional tRNAs. By summarizing the findings, the general structural requirements of mitochondrial tRNAs necessary for their functioning in the mitochondrial translation system are considered.  相似文献   

10.
Metazoan organisms have many tRNA genes responsible for decoding amino acids. The set of all tRNA genes can be grouped in sets of common amino acids and isoacceptor tRNAs that are aminoacylated by corresponding aminoacyl-tRNA synthetases. Analysis of tRNA alignments shows that, despite the high number of tRNA genes, specific tRNA sequence motifs are highly conserved across multicellular eukaryotes. The conservation often extends throughout the isoacceptors and isodecoders with, in some cases, two sets of conserved isodecoders. This study is focused on non-Watson–Crick base pairs in the helical stems, especially GoU pairs. Each of the four helical stems may contain one or more conserved GoU pairs. Some are amino acid specific and could represent identity elements for the cognate aminoacyl tRNA synthetases. Other GoU pairs are found in more than a single amino acid and could be critical for native folding of the tRNAs. Interestingly, some GoU pairs are anticodon-specific, and others are found in phylogenetically-specific clades. Although the distribution of conservation likely reflects a balance between accommodating isotype-specific functions as well as those shared by all tRNAs essential for ribosomal translation, such conservations may indicate the existence of specialized tRNAs for specific translation targets, cellular conditions, or alternative functions.  相似文献   

11.
The three consecutive G:C base pairs, G29:C41, G30:C40, and G31:C39, are conserved in the anticodon stem of virtually all initiator tRNAs from eubacteria, eukaryotes, and archaebacteria. We show that these G:C base pairs are important for function of the tRNA in initiation of protein synthesis in vivo. We changed these base pairs individually and in combinations and analyzed the activities of the mutant Escherichia coli initiator tRNAs in initiation in vivo. For assessment of activity of the mutant tRNAs in vivo, mutations in the G:C base pairs were coupled to mutation in the anticodon sequence from CAU to CUA. Mutations in each of the G:C base pairs reduced activity of the mutant tRNA in initiation, with mutation in the second G:C base pair having the most severe effect. The greatly reduced activity of this C30:G40 mutant tRNA is not due to defects in aminoacylation or formulation of the tRNA or defects in base modification of the A37, next to the anticodon, which we had previously shown to be important for activity of the mutant tRNAs in initiation. The anticodon stem mutants are most likely affected specifically at the step of binding to the ribosomal P site. The pattern of cleavages in the anticodon loop of mutant tRNAs by S1 nuclease indicate that the G:C base pairs may be involved directly in interactions of the tRNA with components of the P site on the ribosome rather than indirectly by inducing a particular conformation of the anticodon loop critical for function of the tRNA in initiation.  相似文献   

12.
Analysis of the updated compilation of more than 8,000 tRNA gene sequences confirmed our previously reported finding that in pairs of consensus tRNAs with complementary anticodons, their second bases in the acceptor stems are also complementary. This dual complementarity points to the following: (1) the operational code embodied in the acceptor stem, and the classic genetic code embodied in the anticodon could have had the same common ancestor; (2) new tRNAs most likely entered primitive translation in pairs with complementary anticodons; and (3) this process of code expansion was directed by the primordial double-strand coding. However, we did not find the dual complementarity when testing all tRNA pairs in which anticodons were complementary only at the central position, but not complementary at least at one of the flanking two positions. This observation, together with certain additional evidence, suggests that both codes were still being shaped (with only the second base established at the time) when the first protein aminoacyl-tRNA synthetases could have already started replacing their ribozymic precursors.  相似文献   

13.
Bovine mitochondrial tRNA(Ser) (UCN) has been thought to have two U-U mismatches at the top of the acceptor stem, as inferred from its gene sequence. However, this unusual structure has not been confirmed at the RNA level. In the course of investigating the structure and function of mitochondrial tRNAs, we have isolated the bovine liver mitochondrial tRNA(Ser) (UCN) and determined its complete sequence including the modified nucleotides. Analysis of the 5'-terminal nucleotide and enzymatic determination of the whole sequence of tRNA(Ser) (UCN) revealed that the tRNA started from the third nucleotide of the putative tRNA(Ser) (UCN) gene, which had formerly been supposed. Enzymatic probing of tRNA(Ser) (UCN) suggests that the tRNA possesses an unusual cloverleaf structure with the following characteristics. (1) There exists only one nucleotide between the acceptor stem with 7 base pairs and the D stem with 4 base pairs. (2) The anticodon stem seems to consist of 6 base pairs. Since the same type of cloverleaf structure as above could be constructed only for mitochondrial tRNA(Ser) (UCN) genes of mammals such as human, rat and mouse, but not for those of non-mammals such as chicken and frog, this unusual secondary structure seems to be conserved only in mammalian mitochondria.  相似文献   

14.
15.
Even though the evolutionary conservation of the cloverleaf model is strongly suggestive of powerful constraints on the secondary structure of functional tRNAs, some mitochondrial tRNAs cannot be folded into this form. From the optimal base pairing pattern of these recalcitrant tRNAs, structural correlations between the length of the anticodon stem and the lengths of connector regions between the two helical domains, formed by the coaxial stacking of the anticodon and D-stems and the acceptor and T-stems, have been derived and used to scan the tRNA and tRNA gene database. We show here that some cytosolic tRNA gene sequences that are compatible with the cloverleaf model can also be folded into patterns proposed for the unusual mitochondrial tRNAs. Furthermore, the ability to be folded into these atypical structures correlates in the mature RNA sequences with the presence of dimethylguanosine, whose role may be to prevent the unusual mitochondrial tRNA pattern folding.  相似文献   

16.
During protein biosynthesis, all aminoacylated elongator tRNAs except selenocysteine-inserting tRNA Sec form ternary complexes with activated elongation factor. tRNA Sec is bound by its own translation factor, an elongation factor analogue, e.g. the SELB factor in prokaryotes. An apparent reason for this discrimination could be related to the unusual length of tRNA Sec amino acid-acceptor branch formed by 13 bp. However, it has been recently shown that an aspartylated minihelix of 13 bp derived from yeast tRNA Asp is an efficient substrate for Thermus thermophilus EF-Tu-GTP, suggesting that features other than the length of tRNA Sec prevent its recognition by EF-Tu-GTP. A stepwise mutational analysis of a minihelix derived from tRNA Sec in which sequence elements of tRNA Asp were introduced showed that the sequence of the amino acid- acceptor branch of Escherichia coli tRNA Sec contains a specific structural element that hinders its binding to T.thermophilus EF-Tu-GTP. This antideterminant is located in the 8th, 9th and 10th bp in the acceptor branch of tRNA Sec, corresponding to the last base pair in the amino acid acceptor stem and the two first pairs in the T-stem. The function of this C7.G66/G49.U65/C50.G64 box was tested by its transplantation into a minihelix derived from tRNA Asp, abolishing its recognition by EF-Tu-GTP. The specific role of this nucleotide combination is further supported by its absence in all known prokaryotic elongator tRNAs.  相似文献   

17.
18.
RNA minihelices and the decoding of genetic information   总被引:1,自引:0,他引:1  
P Schimmel 《FASEB journal》1991,5(8):2180-2187
The rules of the genetic code are determined by the specific aminoacylation of transfer RNAs by aminoacyl transfer RNA synthetase. A straightforward analysis shows that a system of synthetase-tRNA interactions that relies on anticodons for specificity could, in principle, enable most synthetases to distinguish their cognate tRNA isoacceptors from all others. Although the anticodons of some tRNAs are recognition sites for the cognate aminoacyl tRNA synthetases, for other synthetases the anticodon is dispensable for specific aminoacylation. In particular, alanine and histidine tRNA synthetases aminoacylate small RNA minihelices that reconstruct the part of their cognate tRNAs that is proximate to the amino acid attachment site. Helices with as few as six base pairs can be efficiently aminoacylated. The specificity of aminoacylation is determined by a few nucleotides and can be converted from one amino acid to another by the change of only a few nucleotides. These findings suggest that, for a subgroup of the synthetases, there is a distinct code in the acceptor helix of transfer RNAs that determines aminoacylation specificity.  相似文献   

19.
Choi H  Otten S  McClain WH 《Biochimie》2002,84(8):705-711
The relationship between tRNA structure and function has been widely investigated by site-directed mutagenesis. This method has been a very useful tool to reveal the critical bases in tRNAs that are important for recognition and aminoacylation, but has been limited by the large number of possible base combinations in tRNA molecules. We have devised a new method that uses tRNA knockout cells for selection of functional tRNAs from a mutant tRNA gene library to overcome this limitation. To explore the mechanism of tRNA(Ala) recognition, the bases of the acceptor-stem region were randomized and active mutants were selected in a tRNA(Ala) knockout strain. Mutants of tRNA(Ala) having diverse sequence combinations in the acceptor-stem region and a broad range of functional activity to support knockout cell growth were isolated. The mutant tRNAs selected by the method included molecules containing novel base substitutions as well as extensively altered base combinations that would not be readily generated by rationally designed site-directed mutagenesis. Our results emphasize the importance of the acceptor stem as a structural unit in which some nucleotides may carry more weight than others, but in summation every nucleotide contributes to the interaction with the enzyme.  相似文献   

20.
J P Shi  S A Martinis  P Schimmel 《Biochemistry》1992,31(21):4931-4936
Previous work established that seven-base-pair hairpin microhelices with sequences based on the acceptor stems of alanine, glycine, methionine, and histidine tRNAs can be aminoacylated specifically with their cognate amino acids. To obtain "minimalist" substrates with fewer base pairs, we took advantage of the high thermodynamic stability of RNA tetraloop motifs that are found in ribosomal RNAs. We show here that rationally designed RNA tetraloops with as few as four base pairs are substrates for aminoacylation. Major nucleotide determinants for recognition by the class II synthetases were incorporated into each of the respective tetraloop substrates, resulting in specific aminoacylation by the alanine, glycine, and histidine tRNA synthetases. An analysis of the kinetics of aminoacylation shows that, for the alanine system, the majority of the transition-state stabilization provided by the synthetase-tRNA interaction is reproduced by the interaction of the synthetase with nucleotides in its minimalist tetraloop substrate. In an extension of this work, we also observed specific aminoacylation with the class I methionine tRNA synthetase of RNA tetraloops based on sequences in the acceptor stem of methionine tRNA. Thus, the results demonstrate four different examples where specific aminoacylation is directed by sequences/structures contained in less than half of a turn of an RNA helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号