首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is now well established that exposure of cells and tissues to nitric oxide leads to the formation of a dinitrosyl-iron complex bound to intracellular proteins, but little is known about how the complex is formed, the identity of the proteins, and the physiological role of this process. By using EPR spectroscopy and enzyme activity measurements to study the mechanism in hepatocytes, we here identify the complex as a dinitrosyl-diglutathionyl-iron complex (DNDGIC) bound to Alpha class glutathione S-transferases (GSTs) with extraordinary high affinity (K(D) = 10(-10) m). This complex is formed spontaneously through NO-mediated extraction of iron from ferritin and transferrin, in a reaction that requires only glutathione. In hepatocytes, DNDGIC may reach concentrations of 0.19 mm, apparently entirely bound to Alpha class GSTs, present in the cytosol at a concentration of about 0.3 mm. Surprisingly, about 20% of the dinitrosyl-glutathionyl-iron complex-GST is found to be associated with subcellular components, mainly the nucleus, as demonstrated in the accompanying paper (Stella, L., Pallottini, V., Moreno, S., Leoni, S., De Maria, F., Turella, P., Federici, G., Fabrini, R., Dawood, K. F., Lo Bello, M., Pedersen, J. Z., and Ricci, G. (2007) J. Biol. Chem. 282, 6372-6379). DNDGIC is a potent irreversible inhibitor of glutathione reductase, but the strong complex-GST interaction ensures full protection of glutathione reductase activity in the cells, and in vitro experiments show that damage to the reductase only occurs when the DNDGIC concentration exceeds the binding capacity of the intracellular GST pool. Because Pi class GSTs may exert a similar role in other cell types, we suggest that specific sequestering of DNDGIC by GSTs is a physiological protective mechanism operating in conditions of excessive levels of nitric oxide.  相似文献   

2.
Spectroscopic and rapid kinetic experiments were performed to detail the interaction of human glutathione S-transferases GSTA1-1, GSTM2-2, and GSTP1-1 with 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX). This compound is a representative molecule of a new class of 7-nitro-2,1,3-benzoxadiazole (NBD) derivatives (non-GSH peptidomimetic compounds) that have been designed both to give strong GST inhibition and to accumulate in tumor cells avoiding the extrusion mechanisms mediated by the multidrug resistance protein pumps. We have recently shown that submicromolar amounts of NBDHEX trigger apoptosis in several human tumor cell lines through the dissociation of the JNK.GSTP1-1 complex (Turella, P., Cerella, C., Filomeni, G., Bullo, A., De Maria, F., Ghibelli, L., Ciriolo, M. R., Cianfriglia, M., Mattei, M., Federici, G., Ricci, G., and Caccuri, A. M. (2005) Cancer Res. 65, 3751-3761). Results reported in the present study indicated that NBDHEX behaves like a suicide inhibitor for GSTs. It bound to the H-site and was conjugated with GSH forming a sigma complex at the C-4 of the benzoxadiazole ring. This complex was tightly stabilized in the active site of GSTP1-1 and GSTM2-2, whereas in GSTA1-1 the release of the 6-mercapto-1-hexanol from the sigma complex was the favored event. Docking studies demonstrated the likely localization of the sigma complex in the GST active sites and provide a structural explanation for its strong stabilization.  相似文献   

3.
4.
Enzyme-linked immunoassays (ELISAs) based on the double-antibody sandwich technique have been developed for the quantitative analysis of the major human cytosolic class Pi, Mu and Alpha glutathione transferases (GSTs). The procedures were optimized with respect to antibody concentration for coating of plates as well as other parameters in order to achieve high sensitivity and accuracy. No cross-reactivity was detected between members of the three different classes of GSTs or among the Mu class GSTs M2-2, M3-3 and M4-4 with the ELISA for GST M1-1. The ELISAs have been applied to establish the cytosolic GST profiles of 10 cell lines and to monitor the plasma GST levels in cancer patients. The results revealed that the class Pi GST was the dominant isoenzyme in six (LS 174T, HCT-8, Hu 549 Pat, K-562, U-937 and Hu 549) out of nine tumor cell lines and immortalized hepatocytes (Chang Liver). The isoenzymes A1-1 and M1-1 were determined to be the major GST components in Hep G2 and HeLa cells, respectively. In a clinical study, the majority of the patients with urinary bladder cancer were found to have increased plasma levels of both GST A1-1 and GST P1-1 (10/15), while patients with renal cancer frequently showed increases only in GST P1-1 (5/8). The results demonstrate that the ELISAs are suitable for analyzing GST phenotypes in both normal and tumor cells and in monitoring plasma levels of GSTs in cancer patients.  相似文献   

5.
Using monoclonal antibodies we identified a group of eight polypeptides of rat liver nuclear envelopes that have common epitopes. Most or all of these proteins are structurally distinct, as shown by tryptic peptide mapping and analysis with polyclonal antibodies. While these polypeptides are relatively tightly bound to nuclear membranes, only one is an integral membrane protein. The eight antigens cofractionate with the nuclear pore complex under various conditions of ionic strength and detergent. It can be seen by immunofluorescence microscopy that the monoclonal antibodies reacting with these antigens stain the nuclear surface of interphase cells in a finely punctate pattern. When the nuclear envelope is disassembled and subsequently reformed during mitosis, the proteins are reversibly dispersed throughout the cytoplasm in the form of minute foci. By EM immunogold localization on isolated nuclear envelopes, the monoclonal antibodies label exclusively the nuclear pore complex, at both its nucleoplasmic and cytoplasmic margins. Considered together, our biochemical and localization data indicate that the eight nuclear envelope polypeptides are pore complex components. As shown in the accompanying paper (Holt, G. D., C. M. Snow, A. Senior, R. S. Haltiwanger, L. Gerace, and G. W. Hart, J. Cell Biol., 104:1157-1164) these eight polypeptides contain a novel form of glycosylation, O-linked N-acetylglucosamine. The relative abundance and disposition of these O-linked glycoproteins in the pore complex are consistent with their having a role in nucleocytoplasmic transport.  相似文献   

6.
The folding and assembly of the dimeric glutathione transferases (GST) involves the association of two structurally distinct domains per subunit. A prominent and conserved domain-domain interaction in class alpha GSTs is formed by the packing of the indole side chain of Trp-20 from domain I into a hydrophobic pocket in domain II. Stability studies have shown that partial dissociation of the domains near Trp-20 occurs as an initial fast event during the unfolding kinetics of human GSTA1-1 (Wallace et al., Biochemistry 37 (1998) 5320-5328; Wallace et al., Biochem. J. 336 (1998) 413-418). The contribution of Trp-20 toward stabilising the domain-domain interface was investigated by mutating it to either a phenylalanine (W20F) or alanine (W20A) and determining the functionality (catalysis and non-substrate ligand binding) and stability (thermal- and urea-induced denaturation) of the mutant proteins. The replacement of Trp-20 did not impact on the protein's gross structural properties. Functionally, the W20F was non-disruptive, whereas the cavity-creating W20A mutation was. Both mutants destabilised the native state with W20A exerting the greatest effect. Reduced m-values as well as the protein concentration dependence of the urea unfolding transitions for W20F GSTA1-1 suggest the presence of a dimeric intermediate at equilibrium that is not observed with wild-type protein. Unfolding kinetics monitored by stopped-flow tyrosine fluorescence was mono-exponential and corresponded to the global unfolding of the protein during which the dimeric intermediate unfolds to two unfolded monomers. The similar unfolding kinetics data for wild-type and W20F A1-1 indicates that the global unfolding event was not affected by amino acid replacement. We propose that the packing interactions at the conserved Trp-20 plays an important role in stabilising the intrasubunit domain I-domain II interface of class alpha GSTs.  相似文献   

7.
NASP (nuclear autoantigenic sperm protein) is a linker histone-binding protein found in all dividing cells that is regulated by the cell cycle (Richardson, R. T., Batova, I. N., Widgren, E. E., Zheng, L. X., Whitfield, M., Marzluff, W. F., and O'Rand, M. G. (2000) J. Biol. Chem. 275, 30378-30386), and in the nucleus linker histones not bound to DNA are bound to NASP (Alekseev, O. M., Bencic, D. C., Richardson R. T., Widgren E. E., and O'Rand, M. G. (2003) J. Biol. Chem. 278, 8846-8852). In mouse spermatogenic cells tNASP binds the testis-specific linker histone H1t. Utilizing a cross-linker, 3,3'-dithiobissulfosuccinimidyl propionate, and mass spectrometry, we have identified HSP90 as a testis/embryo form of NASP (tNASP)-binding partner. In vitro assays demonstrate that the association of tNASP with HSP90 stimulated the ATPase activity of HSP90 and increased the binding of H1t to tNASP. HSP90 and tNASP are present in both nuclear and cytoplasmic fractions of mouse spermatogenic cells; however, HSP90 bound to NASP only in the cytoplasm. In vitro nuclear import assays on permeabilized HeLa cells demonstrate that tNASP, in the absence of any other cytoplasmic factors, transports linker histones into the nucleus in an energy and nuclear localization signal-dependent manner. Consequently we hypothesize that in the cytoplasm linker histones are bound to a complex containing NASP and HSP90 whose ATPase activity is stimulated by binding NASP. NASP-H1 is subsequently released from the complex and translocates to the nucleus where the H1 is released for binding to the DNA.  相似文献   

8.
The yeast nuclear mutant, pet 936, has previously been shown to be defective in the assembly of a functional mitochondrial ATPase (Todd, R. D., McAda, P. C., and Douglas, M. G. (1979) J. Biol. Chem. 254, 11134-11141). In the present report, trypsin degradation and subunit-specific antibody binding have been used to localize subunits 1, 2, and 3 external to or associated with the outer aspect of the inner mitochondrial membrane in the mutant strain. A similar population of unassembled subunits was found in the parental strain as well. Isotope dilution experiments are compatible with those unassembled subunits being normal intermediates in the assembly pathway of the ATPase complex which are blocked from transport across the inner mitochondrial membrane in the mutant, pet 936.  相似文献   

9.
Coupling of the nucleus and cytoplasm: role of the LINC complex   总被引:2,自引:0,他引:2       下载免费PDF全文
The nuclear envelope defines the barrier between the nucleus and cytoplasm and features inner and outer membranes separated by a perinuclear space (PNS). The inner nuclear membrane contains specific integral proteins that include Sun1 and Sun2. Although the outer nuclear membrane (ONM) is continuous with the endoplasmic reticulum, it is nevertheless enriched in several integral membrane proteins, including nesprin 2 Giant (nesp2G), an 800-kD protein featuring an NH(2)-terminal actin-binding domain. A recent study (Padmakumar, V.C., T. Libotte, W. Lu, H. Zaim, S. Abraham, A.A. Noegel, J. Gotzmann, R. Foisner, and I. Karakesisoglou. 2005. J. Cell Sci. 118:3419-3430) has shown that localization of nesp2G to the ONM is dependent upon an interaction with Sun1. In this study, we confirm and extend these results by demonstrating that both Sun1 and Sun2 contribute to nesp2G localization. Codepletion of both of these proteins in HeLa cells leads to the loss of ONM-associated nesp2G, as does overexpression of the Sun1 lumenal domain. Both treatments result in the expansion of the PNS. These data, together with those of Padmakumar et al. (2005), support a model in which Sun proteins tether nesprins in the ONM via interactions spanning the PNS. In this way, Sun proteins and nesprins form a complex that links the nucleoskeleton and cytoskeleton (the LINC complex).  相似文献   

10.
The Alpha class glutathione S-transferases (GSTs) in human liver are composed of polypeptides of Mr 25,900. These enzymes are dimeric, and two immunochemically distinct subunits, B1 and B2, have been described that combine to form GSTs B1B1, B1B2 and B2B2 [Stockman, Beckett & Hayes (1985) Biochem. J. 227, 457-465]. Gradient affinity elution from GSH-Sepharose has been used to resolve the three Alpha class GSTs, and this method has been applied to demonstrate marked inter-individual differences in the hepatic content of GSTs B1B1, B1B2 and B2B2. The B1 and B2 subunits can be resolved by reverse-phase h.p.l.c., and their elution positions suggest that they are equivalent to the alpha chi and alpha y h.p.l.c. peaks described by Ketterer and his colleagues [Ostlund Farrants, Meyer, Coles, Southan, Aitken, Johnson & Ketterer (1987) Biochem. J. 245, 423-428]. The B1 and B2 subunits have now been cleaved with CNBr and the fragments subjected to automated amino acid sequence analysis. The sequence data show that B1 and B2 subunits do not arise from post-translational modification, as had been previously believed for the hepatic Alpha class GSTs, but are instead the products of separate genes; B1 and B2 subunits were found to contain different amino acid residues at positions 88, 110, 111, 112, 116, 124 and 127. The relationship between the B1 and B2 subunits and the cloned GTH1 and GTH2 cDNA sequences [Rhoads, Zarlengo & Tu (1987) Biochem. Biophys. Res. Commun. 145, 474-481] is discussed.  相似文献   

11.
A high molecular weight glycoprotein found associated with a nuclear matrix-pore complex-lamina (NMPCL) preparation obtained from Drosophila melanogaster embryos has been shown by in vitro analyses to be largely confined to this subcellular fraction. In contrast with several of the NMPCL proteins, this glycoprotein remains completely insoluble after treatment with 5 M urea. It has, therefore, been possible to separate the glycoprotein from other NMPCL components by differential urea extraction. The glycoprotein in the 5 M urea-extracted pellet has been solubilized by boiling in sodium dodecyl sulfate and purified to near-homogeneity by sequential steps of chromatography on hydroxylapatite and Sephacryl S-300 (both run in the presence of 0.1% sodium dodecyl sulfate), followed by affinity chromatography on lentil lectin-Sepharose. Over 30 hybridoma cell lines producing antibodies against this glycoprotein have been obtained. Monoclonality has been established for two of these lines (designated AGP-26 and AGP-78), and the antibodies they secrete have been further characterized. Western blot analysis has shown both antibodies to be monospecific (with respect to other Drosophila embryo polypeptides) for the major NMPCL glycoprotein; in addition, antibody AGP-78 has been shown to be weakly cross-reactive with glycoproteins of similar or identical molecular weight found associated with isolated nuclear fractions obtained from Xenopus oocytes, as well as chicken, opossum, and rat livers. Finally, both antibodies AGP-26 and AGP-78 react exclusively with the Drosophila nuclear periphery (nuclear envelope) in situ as demonstrated by indirect immunofluorescence analysis of larval cryosections. Based on these results as well as upon those of biochemical studies reported previously (Berrios, M., Filson, A. J., Blobel, G, and Fisher, P. A. (1983) J. Biol. Chem. 258, 13384-13390), we conclude that the major Drosophila NMPCL glycoprotein is the specific homolog of the high molecular weight glycoprotein recently shown using immunoelectron microscopy to be a distinct component of the rat liver nuclear pore complex (Gerace, L., Ottaviano, Y., and Kondor-Koch, C. (1982) J. Cell Biol. 95, 826-837).  相似文献   

12.
13.
The signal transducing function of Gbeta(5) in brain is unknown. When studied in vitro Gbeta(5) is the only heterotrimeric Gbeta subunit known to interact with both Ggamma subunits and regulators of G protein signaling (RGS) proteins. When tested with Ggamma, Gbeta(5) interacts with other classical components of heterotrimeric G protein signaling pathways such as Galpha and phospholipase C-beta. We recently demonstrated nuclear expression of Gbeta(5) in neurons and brain (Zhang, J. H., Barr, V. A., Mo, Y., Rojkova, A. M., Liu, S., and Simonds, W. F. (2001) J. Biol. Chem. 276, 10284-10289). To gain further insight into the mechanism of Gbeta(5) nuclear localization, we generated a Gbeta(5) mutant deficient in its ability to interact with RGS7 while retaining its ability to bind Ggamma, and we compared its properties to the wild-type Gbeta(5). In HEK-293 cells co-transfection of RGS7 but not Ggamma(2) supported expression in the nuclear fraction of transfected wild-type Gbeta(5). In contrast the Ggamma-preferring Gbeta(5) mutant was not expressed in the HEK-293 cell nuclear fraction with either co-transfectant. The Ggamma-selective Gbeta(5) mutant was also excluded from the cell nucleus of transfected PC12 cells analyzed by laser confocal microscopy. These results define a requirement for RGS protein binding for Gbeta(5) nuclear expression.  相似文献   

14.
NUP116 encodes a 116-kD yeast nuclear pore complex (NPC) protein that is not essential but its deletion (nup116 delta) slows cell growth at 23 degrees C and is lethal at 37 degrees C (Wente, S. R., M. P. Rout, and G. Blobel. 1992. J. Cell Biol. 119:705-723). Electron microscopic analysis of nup116 delta cells shifted to growth at 37 degrees C revealed striking perturbations of the nuclear envelope: a double membrane seal that was continuous with the inner and outer nuclear membranes had formed over the cytoplasmic face of the NPCs. Electron- dense material was observed accumulating between the cytoplasmic face of these NPCs and the membrane seal, resulting in "herniations" of the nuclear envelope around individual NPCs. In situ hybridization with poly(dT) probes showed the accumulation of polyadenylated RNA in the nuclei of arrested nup116 delta cells, sometimes in the form of punctate patches at the nuclear periphery. This is consistent with the electron microscopically observed accumulation of electron-dense material within the nuclear envelope herniations. We propose that nup116 delta NPCs remain competent for export, but that the formation of the membrane seals over the NPCs blocks nucleocytoplasmic traffic.  相似文献   

15.
16.
Protein Ser/Thr phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that controls numerous cellular processes by the dephosphorylation of key regulatory proteins. PP1 is expressed in various cellular compartments but is most abundant in the nucleus. We have examined the determinants for the nuclear localization of enhanced green fluorescent protein-tagged PP1 in COS1 cells. Our studies show that PP1gamma(1) does not contain a functional nuclear localization signal and that its nuclear accumulation does not require Sds22, which has previously been implicated in the nuclear accumulation of PP1 in yeast (Peggie, M. W., MacKelvie, S. H., Bloecher, A., Knatko, E. V., Tatchell, K., and Stark, M. J. R. (2002) J. Cell Sci. 115, 195-206). However, the nuclear targeting of PP1 isoforms was alleviated by the mutation of their binding sites for proteins that interact via an RVXF motif. Moreover, one of the mutants with a cytoplasmic accumulation and decreased affinity for RVXF motifs (PP1gamma(1)-F257A) could be re-targeted to the nucleus by the overexpression of nuclear interactors (NIPP1 (nuclear inhibitor of PP1) and PNUTS (PP1 nuclear targeting subunit)) with a functional RVXF motif. Also, the addition of a synthetic RVXF-containing peptide to permeabilized cells resulted in the loss of nuclear enhanced green fluorescent protein-PP1gamma(1). Finally, NIPP1(-/-) mouse embryos showed a nuclear hyperphosphorylation on threonine, consistent with a role for NIPP1 in the nuclear targeting and/or retention of PP1. Our data suggest that both the nuclear translocation and the nuclear retention of PP1 depend on its binding to interactors with an RVXF motif.  相似文献   

17.
The antiviral antibiotic brefeldin A (BFA) strongly inhibits the protein secretion in cultured rat hepatocytes (Misumi, Y., Misumi, Y., Miki, K., Takatsuki, A., Tamura, G., and Ikehara, Y. (1986) J. Biol. Chem. 261, 11398-11403). We have further examined the inhibitory effect of the drug on intracellular transport of albumin by an immunocytochemical technique with peroxidase-conjugated Fab fragments of anti-rat albumin IgG. In hepatocytes treated with BFA (2.5 micrograms/ml) for 1 h at 37 degrees C, no characteristic structures of the Golgi complex could be observed, and albumin was diffusely distributed in the endoplasmic reticulum (ER), nuclear envelope, and small vesicles around, in contrast to its condensed localization in the Golgi complex in the control cells. Such an unusual distribution of the secretory protein, however, was rearranged to the normal localization in the Golgi complex after 4 h even in the presence of the drug, possibly due to a metabolism of the drug to an inert form. Exposure of the cells to BFA with constant renewals (2.5 micrograms/ml at 1-h intervals) or at a higher concentration (10 micrograms/ml) caused a prolonged accumulation of albumin in the ER, resulting in its dilation. These results indicate that BFA primarily blocks the protein transport from the ER to the Golgi complex, consistent with the biochemical data previously reported.  相似文献   

18.
The key regulator of G(2)-M transition of the cell cycle is M-phase promoting factor (MPF), a complex composed of cdc2 and a B-type cyclin. Cyclin B1 nuclear localization involves phosphorylation within a region called the cytoplasmic retention signal, which also contains a nuclear export signal. The mechanism of MPF nuclear localization remains unclear since it contains no functional nuclear localization signal (NLS). We exploited the yeast two-hybrid screen to find protein(s) potentially mediating localization of cyclin B1 and identified a novel interaction between cyclin B1 and cyclin F. We found that cdc2, cyclin B1 and cyclin F form a complex that exhibits histone H1 kinase activity. Cyclin B1 and cyclin F also colocalize through immunofluorescence studies. Additionally, deletion analysis revealed that each putative NLS of cyclin F is functional. Taken together, the data suggest that the NLS regions of cyclin F regulate cyclin B1 localization to the nucleus. The interaction between cyclin B1 and cyclin F represents the first example of direct cyclin-cyclin binding, and elucidates a novel mechanism that regulates MPF localization and function.  相似文献   

19.
Recent work has demonstrated that some actively transcribed genes closely associate with nuclear pore complexes (NPC) at the nuclear periphery. The Saccharomyces cerevisiae Mlp1 and Mlp2 proteins are components of the inner nuclear basket of the nuclear pore that mediate interactions with these active genes. To investigate the physical link between the NPC and active loci, we identified proteins that interact with the carboxyl-terminal globular domain of Mlp1 by tandem affinity purification coupled with mass spectrometry. This analysis led to the identification of several components of the Spt-Ada-Gcn5-acetyltransferase (SAGA) histone acetyltransferase complex, Gcn5, Ada2, and Spt7. We utilized co-immunoprecipitation and in vitro binding assays to confirm the interaction between the Mlp proteins and SAGA components. Chromatin immunoprecipitation experiments revealed that Mlp1 and SAGA components associate with the same region of the GAL promoters. Critically, this Mlp-promoter interaction depends on the integrity of the SAGA complex. These results identify a physical association between SAGA and the NPC, and support previous results that relied upon visualization of GAL loci at the nuclear periphery by microscopy (Cabal, G. G. Genovesio, A., Rodriguez-Navarro, S., Zimmer, C., Gadal, O., Lesne, A., Buc, H., Feuerbach-Fournier, F., Olivo-Marin, J.-C., Hurt, E. C., and Nehrbass, U. (2006) Nature 441, 770-773). We propose that a physical interaction between nuclear pore components and the SAGA complex can link the actively transcribed GAL genes to the nuclear pore.  相似文献   

20.
Y Gao  J Boyd  G J Pielak  R J Williams 《Biochemistry》1991,30(28):7033-7040
Differences in chemical shifts and in nuclear Overhauser effects between the C102T and F82S,C102T variants of Saccharomyces cerevisiae iso-1-cytochrome c in both the reduced and oxidized forms are reported and analyzed. There is evidence for small conformational differences in both oxidation states of the double variant near position 82. Differences in structure are more evident in the oxidized forms of the variants. These differences extend to distant parts of the protein. It is concluded that the oxidized double variant has undergone a small rearrangement of several regions of the protein that are linked by a hydrogen-bond network. It is shown that the rearrangement involves hydrogen bonds associated with the two heme propionates and associated water molecules. The deductions from nuclear magnetic resonance data are compared with the differences in the crystal structures of the reduced forms of wild-type protein and the F82S variant [Louie, G. V., Pielak, G. J., Smith, M., & Brayer, G. D. (1988) Biochemistry 27, 7870-7876].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号