共查询到20条相似文献,搜索用时 15 毫秒
1.
Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks 下载免费PDF全文
Courtney E. Campany Mark G. Tjoelker Susanne von Caemmerer Remko A. Duursma 《Plant, cell & environment》2016,39(12):2762-2773
Light gradients within tree canopies play a major role in the distribution of plant resources that define the photosynthetic capacity of sun and shade leaves. However, the biochemical and diffusional constraints on gas exchange in sun and shade leaves in response to light remain poorly quantified, but critical for predicting canopy carbon and water exchange. To investigate the CO2 diffusion pathway of sun and shade leaves, leaf gas exchange was coupled with concurrent measurements of carbon isotope discrimination to measure net leaf photosynthesis (An), stomatal conductance (gs) and mesophyll conductance (gm) in Eucalyptus tereticornis trees grown in climate controlled whole‐tree chambers. Compared to sun leaves, shade leaves had lower An, gm, leaf nitrogen and photosynthetic capacity (Amax) but gs was similar. When light intensity was temporarily increased for shade leaves to match that of sun leaves, both gs and gm increased, and An increased to values greater than sun leaves. We show that dynamic physiological responses of shade leaves to altered light environments have implications for up‐scaling leaf level measurements and predicting whole canopy carbon gain. Despite exhibiting reduced photosynthetic capacity, the rapid up‐regulation of gm with increased light enables shade leaves to respond quickly to sunflecks. 相似文献
2.
Estimating the sensitivity of stomatal conductance to photosynthesis: a review 总被引:2,自引:0,他引:2 下载免费PDF全文
Grace L. Miner William L. Bauerle Dennis D. Baldocchi 《Plant, cell & environment》2017,40(7):1214-1238
A common approach for estimating fluxes of CO2 and water in canopy models is to couple a model of photosynthesis (An) to a semi‐empirical model of stomatal conductance (gs) such as the widely validated and utilized Ball–Berry (BB) model. This coupling provides an effective way of predicting transpiration at multiple scales. However, the designated value of the slope parameter (m) in the BB model impacts transpiration estimates. There is a lack of consensus regarding how m varies among species or plant functional types (PFTs) or in response to growth conditions. Literature values are highly variable, with inter‐species and intra‐species variations of >100%, and comparisons are made more difficult because of differences in collection techniques. This paper reviews the various methods used to estimate m and highlights how variations in measurement techniques or the data utilized can influence the resultant m. Additionally, this review summarizes the reported responses of m to [CO2] and water stress, collates literature values by PFT and compiles nearly three decades of values into a useful compendium. 相似文献
3.
This review summarizes current understanding of the mechanisms that underlie the response of photosynthesis and stomatal conductance to elevated carbon dioxide concentration ([CO2]), and examines how downstream processes and environmental constraints modulate these two fundamental responses. The results from free-air CO2 enrichment (FACE) experiments were summarized via meta-analysis to quantify the mean responses of stomatal and photosynthetic parameters to elevated [CO2]. Elevation of [CO2] in FACE experiments reduced stomatal conductance by 22%, yet, this reduction was not associated with a similar change in stomatal density. Elevated [CO2] stimulated light-saturated photosynthesis (Asat) in C3 plants grown in FACE by an average of 31%. However, the magnitude of the increase in Asat varied with functional group and environment. Functional groups with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-limited photosynthesis at elevated [CO2] had greater potential for increases in Asat than those where photosynthesis became ribulose-1,5-bisphosphate (RubP)-limited at elevated [CO2]. Both nitrogen supply and sink capacity modulated the response of photosynthesis to elevated [CO2] through their impact on the acclimation of carboxylation capacity. Increased understanding of the molecular and biochemical mechanisms by which plants respond to elevated [CO2], and the feedback of environmental factors upon them, will improve our ability to predict ecosystem responses to rising [CO2] and increase our potential to adapt crops and managed ecosystems to future atmospheric [CO2]. 相似文献
4.
Differential coordination of stomatal conductance,mesophyll conductance,and leaf hydraulic conductance in response to changing light across species 下载免费PDF全文
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light. 相似文献
5.
Limitation of coffee leaf photosynthesis by stomatal conductance and light availability under different shade levels 总被引:2,自引:0,他引:2
In agroforestry systems, the effect of shade trees on coffee net photosynthesis (A
n) has been the object of debates among coffee scientists. In this study, we undertook over 600 coffee A
n “spot” measurements under four different artificial shade levels (100, 72, 45 and 19% of full solar irradiance) and analyzed
limitations to A
n by low light availability (photon flux density, PFD) and stomatal conductance (g
s). These gas exchange measurements were carried out during two consecutive coffee growing seasons in a commercial plantation
in the Orosi valley of Costa Rica. Levels of A
n were related to PFD and g
s in order to calculate envelope functions which were used to establish PFD or g
s limitations to A
n. Under the growing conditions of the present trial, mean leaf A
n remained stable for growth irradiance (GI) as low as 45% of full sun and decreased by ~20% at 19% GI. Limitation to A
n due to g
s was strong in full sun and decreasing with increasing shade levels. On the other hand, limitation due to PFD remained at
a similar level for all shade treatments. These different evolutions of limitations of A
n by PFD and g
s in response to shade explain the absence of a decrease in coffee leaf A
n with a shade level up to 55%. Consequently, these results confirm that Arabica coffee is a shade-adapted plant with leaves
that can maintain a high photosynthetic performance under low light availability. 相似文献
6.
The effects of blue light (BL) on leaf gas exchange of Populus × canadensis, a strong isoprene emitter, and Quercus ilex and Citrus reticulata, two monoterpene emitters with respectively small and large storage pools for monoterpenes, were studied. Leaves were initially exposed to a saturating photosynthetic photon flux density (PPFD) of white light (WL), which was then progressively reduced to perform WL-response curves. Leaves acclimated to saturating WL were then quickly exposed to equivalent BL levels to perform BL-response curves. Blue light did not significantly affect photosynthetic parameters in the light-limited portion of the PPFD-response curves in both P. × canadensis and Q. ilex. Whereas photosynthesis (A), stomatal conductance (gs), and mesophyll conductance (gm) were significantly decreased at high PPFDs of BL. A was similarly inhibited by BL in C. reticulata, but there was no significant effect of light quality on gs. Overall these results show that the negative effect of BL on photosynthesis is widespread in tree species with different leaf characteristics, and that this involves coordinated reductions in gs and gm. BL negatively affected isoprene emission and, to a lesser extent monoterpene emissions, in concert with photosynthetic inhibition. Interesting, both isoprene and monoterpene emissions were shown to be inversely dependent upon intercellular [CO2]. These results indicate that a change in light spectral quality, which can vary during the day, between days and within seasons, can alter photosynthesis and isoprenoid emissions, depending on the PPFD intensity. Such effects should be strongly considered in photosynthesis and volatile isoprenoid emission models. 相似文献
7.
Jin Wu Shawn P. Serbin Kim S. Ely Brett T. Wolfe L. Turin Dickman Charlotte Grossiord Sean T. Michaletz Adam D. Collins Matteo Detto Nate G. McDowell S. Joseph Wright Alistair Rogers 《Global Change Biology》2020,26(2):823-839
Stomata regulate CO2 uptake for photosynthesis and water loss through transpiration. The approaches used to represent stomatal conductance (gs) in models vary. In particular, current understanding of drivers of the variation in a key parameter in those models, the slope parameter (i.e. a measure of intrinsic plant water‐use‐efficiency), is still limited, particularly in the tropics. Here we collected diurnal measurements of leaf gas exchange and leaf water potential (Ψleaf), and a suite of plant traits from the upper canopy of 15 tropical trees in two contrasting Panamanian forests throughout the dry season of the 2016 El Niño. The plant traits included wood density, leaf‐mass‐per‐area (LMA), leaf carboxylation capacity (Vc,max), leaf water content, the degree of isohydry, and predawn Ψleaf. We first investigated how the choice of four commonly used leaf‐level gs models with and without the inclusion of Ψleaf as an additional predictor variable influence the ability to predict gs, and then explored the abiotic (i.e. month, site‐month interaction) and biotic (i.e. tree‐species‐specific characteristics) drivers of slope parameter variation. Our results show that the inclusion of Ψleaf did not improve model performance and that the models that represent the response of gs to vapor pressure deficit performed better than corresponding models that respond to relative humidity. Within each gs model, we found large variation in the slope parameter, and this variation was attributable to the biotic driver, rather than abiotic drivers. We further investigated potential relationships between the slope parameter and the six available plant traits mentioned above, and found that only one trait, LMA, had a significant correlation with the slope parameter (R2 = 0.66, n = 15), highlighting a potential path towards improved model parameterization. This study advances understanding of gs dynamics over seasonal drought, and identifies a practical, trait‐based approach to improve modeling of carbon and water exchange in tropical forests. 相似文献
8.
9.
A model that couples stomatal conductance, photosynthesis, leaf energy balance and transport of water through the soil–plant–atmosphere continuum is presented. Stomatal conductance in the model depends on light, temperature and intercellular CO2 concentration via photosynthesis and on leaf water potential, which in turn is a function of soil water potential, the rate of water flow through the soil and plant, and on xylem hydraulic resistance. Water transport from soil to roots is simulated through solution of Richards’ equation. The model captures the observed hysteresis in diurnal variations in stomatal conductance, assimilation rate and transpiration for plant canopies. Hysteresis arises because atmospheric demand for water from the leaves typically peaks in mid‐afternoon and because of uneven distribution of soil matric potentials with distance from the roots. Potentials at the root surfaces are lower than in the bulk soil, and once soil water supply starts to limit transpiration, root potentials are substantially less negative in the morning than in the afternoon. This leads to higher stomatal conductances, CO2 assimilation and transpiration in the morning compared to later in the day. Stomatal conductance is sensitive to soil and plant hydraulic properties and to root length density only after approximately 10 d of soil drying, when supply of water by the soil to the roots becomes limiting. High atmospheric demand causes transpiration rates, LE, to decline at a slightly higher soil water content, θs, than at low atmospheric demand, but all curves of LE versus θs fall on the same line when soil water supply limits transpiration. Stomatal conductance cannot be modelled in isolation, but must be fully coupled with models of photosynthesis/respiration and the transport of water from soil, through roots, stems and leaves to the atmosphere. 相似文献
10.
Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes 总被引:10,自引:0,他引:10
BACKGROUND AND AIMS: The stomata are a key channel of the water cycle in ecosystems, and are constrained by both physiological and environmental elements. The aim of this study was to parameterize stomatal conductance by extending a previous empirical model and a revised Ball-Berry model. METHODS: Light and CO(2) responses of stomatal conductance and photosynthesis of winter wheat in the North China Plain were investigated under ambient and free-air CO(2) enrichment conditions. The photosynthetic photon flux density and CO(2) concentration ranged from 0 to 2000 micro mol m(-2) s(-1) and from 0 to 1400 micro mol mol(-1), respectively. The model was validated with data from a light, temperature and CO(2) response experiment. RESULTS: By using previously published hyperbolic equations of photosynthetic responses to light and CO(2), the number of parameters in the model was reduced. These response curves were observed diurnally with large variations of temperature and vapour pressure deficit. The model interpreted stomatal response under wide variations in environmental factors. CONCLUSIONS: Most of the model parameters, such as initial photon efficiency and maximum photosynthetic rate (P(max)), have physiological meanings. The model can be expanded to include influences of other physiological elements, such as leaf ageing and nutrient conditions, especially leaf nitrogen content. 相似文献
11.
The model couples stomatal conductance (g
s) and net photosynthetic rate (P
N) describing not only part of the curve up to and including saturation irradiance (I
max), but also the range above the saturation irradiance. Maximum stomatal conductance (g
smax) and I
max can be calculated by the coupled model. For winter wheat (Triticum aestivum) the fitted results showed that maximum P
N (P
max) at 600 μmol mol−1 was more than at 350 μmol mol−1 under the same leaf temperature, which can not be explained by the stomatal closure at high CO2 concentration because g
smax at 600 μmol mol−1 was less than at 350 μmol mol−1. The irradiance-response curves for winter wheat had similar tendency, e.g. at 25 °C and 350 μmol mol−1 both P
N and g
s almost synchronously reached the maximum values at about 1 600 μmol m−2 s−1. At 25 °C and 600 μmol mol−1 the I
max corresponding to P
max and g
smax was 2 080 and 1 575 μmol m−2 s−1, respectively. 相似文献
12.
Photosynthetic and stomatal conductance responses to acid mist of red spruce seedlings 总被引:9,自引:1,他引:9
Abstract Two-year-old seedlings of Picea rubens, growing in open-top chambers in Scotland were treated twice weekly from July 1987 to December 1987, with mist containing ammonium sulphate and nitric acid at a pH of either 2.5 or 5.0. The response of photosynthesis and stomatal conductance to light flux density and carbon dioxide concentration were measured in March 1989. Leaf chlorophyll a and b contents were also measured. Acid mist (pH 2.5) resulted in several significant changes. First, both the rate of light saturated photosynthesis (Amax) and CO2- saturated rate of photosynthesis (J) were substantially increased, when expressed per unit leaf area. Second, the apparent quantum yield and chlorophylls a and b content increased. Third, as a consequence of the greater chlorophyll content of the leaves treated with acid mist, the rate of Amax, and J, expressed per unit chlorophyll, was substantially reduced in pH 2.5 treated branches. Stomatal conductance was enhanced at all but the highest light flux densities, and was independent of the CO2 concentration, remaining high for all values of CO2 concentration used. These results show that acid mist caused a number of responses in the gas exchange and photosynthetic properties of red spruce. 相似文献
13.
Wataru Yamori Kensuke Kusumi Koh Iba Ichiro Terashima 《Plant, cell & environment》2020,43(5):1230-1240
A close correlation between stomatal conductance and the steady-state photosynthetic rate has been observed for diverse plant species under various environmental conditions. However, it remains unclear whether stomatal conductance is a major limiting factor for the photosynthetic rate under naturally fluctuating light conditions. We analysed a SLAC1 knockout rice line to examine the role of stomatal conductance in photosynthetic responses to fluctuating light. SLAC1 encodes a stomatal anion channel that regulates stomatal closure. Long exposures to weak light before treatments with strong light increased the photosynthetic induction time required for plants to reach a steady-state photosynthetic rate and also induced stomatal limitation of photosynthesis by restricting the diffusion of CO2 into leaves. The slac1 mutant exhibited a significantly higher rate of stomatal opening after an increase in irradiance than wild-type plants, leading to a higher rate of photosynthetic induction. Under natural conditions, in which irradiance levels are highly variable, the stomata of the slac1 mutant remained open to ensure efficient photosynthetic reaction. These observations reveal that stomatal conductance is important for regulating photosynthesis in rice plants in the natural environment with fluctuating light. 相似文献
14.
Summary
Yucca glauca in the Colorado shortgrass prairie undergoes a pronounced midday depression in net photosynthesis and stomatal conductance under summer field conditions. This phenomenon can be duplicated in the laboratory using potted plants by simulating a typical summer daily pattern of leaf temperature and leaf-to-air water vapor concentration difference (w). The decrease in photosynthetic rate appears to be due primarily to high leaf temperatures, while the decrease in stomatal conductance can be attributed mainly to high w values. Stomatal conductance also decreases when leaf temperatures exceed a critical threshold value, even when w is artificially maintained at a constant level. The threshold temperature is commonly attained for leaves in situ, but only after substantial stomatal closure has already occurred as a result of high w values.The photosynthetic temperature optimum and threshold temperature which promotes stomatal closure increases substantially as the growing season progresses. As a result, the midday depression in photosynthesis occurs at higher temperatures in mid-summer than in late spring. Preliminary evidence suggests that the photosynthetic temperature optimum closely follows the naturally-occurring morning leaf temperatures, while the threshold temperature for stomatal closure matches afternoon leaf temperatures. 相似文献
15.
Industrialization has significantly altered atmospheric chemistry by increasing concentrations of chemicals such as nitrogen oxides (NO( x )) and volatile organic carbon, which react in the presence of sunlight to produce tropospheric ozone (O(3)). Ozone is a powerful oxidant that causes both visual and physiological damage to plants, impairing the ability of the plant to control processes like photosynthesis and transpiration. Damage to photosynthesis and stomatal conductance does not always occur at the same rate, which generates a problem when using the Ball-Berry model to predict stomatal conductance because the calculations directly rely on photosynthesis rates. The goals of this work were to develop a modeling framework to modify Ball-Berry stomatal conductance predictions independently of photosynthesis and to test the framework using experimental data. After exposure to elevated O(3) in open-top chambers, photosynthesis and stomatal conductance in tulip poplar changed at different rates through time. We were able to accurately model observed photosynthetic and stomatal conductance responses to chronic O(3) exposure in a Ball-Berry framework by adjusting stomatal conductance in addition to photosynthesis. This led to a significant improvement in the modeled ability to predict both photosynthesis and stomatal conductance responses to O(3). 相似文献
16.
YAN‐SHIH LIN AIMEE BOURNE BELINDA E. MEDLYN DAVID S. ELLSWORTH 《Plant, cell & environment》2013,36(2):262-274
Models of stomatal conductance (gs) are based on coupling between gs and CO2 assimilation (Anet), and it is often assumed that the slope of this relationship (‘g1’) is constant across species. However, if different plant species have adapted to different access costs of water, then there will be differences in g1 among species. We hypothesized that g1 should vary among species adapted to different climates, and tested the theory and its linkage to plant hydraulics using four Eucalyptus species from different climatic origins in a common garden. Optimal stomatal theory predicts that species from sub‐humid zones have a lower marginal water cost of C gain, hence lower g1 than humid‐zone species. In agreement with the theory that g1 is related to tissue carbon costs for water supply, we found a relationship between wood density and g1 across Eucalyptus species of contrasting climatic origins. There were significant reductions in the parameter g1 during drought in humid but not sub‐humid species, with the latter group maintaining g1 in drought. There are strong differences in stomatal behaviour among related tree species in agreement with optimal stomatal theory, and these differences are consistent with the economics involved in water uptake and transport for carbon gain. 相似文献
17.
Hysteresis in the response of stomatal conductance in Pinus sylvestris L needles to light: observations and a hypothesis 总被引:4,自引:4,他引:0
Abstract. The response of stomatal conductance in Pinus sylvestris L. to a sequence of progressively changed photon flux densities showed hysteresis when the direction of the sequence was reversed. Hysteresis was most evident when 1 h was allowed for stabilization at a temperature of 10°C and a leaf-air vapour pressure difference of 0.5 kPa. The hysteresis was largely eliminated by a stabilization time of 2.5 h or a temperature of 20°C. Elimination of self shading also largely eliminated the hysteresis and resulted in light saturation of stomatal conductance at about 600 μE m−2 s−1 whereas with the normal grouping of fasicles light saturation was not achieved at 1750 μE m−2 s−1 even with bilateral illumination. Hysteresis was also eliminated by reduction in the maximum attainable conductance as a result of large leaf-air vapour pressure differences (> 1.8 kPa) but reducing the ambient CO2 concentration to the compensation concentration or below had no effect on hysteresis. In addition to the hysteresis, there was a carry-over effect of the previous treatment. When the direction of the sequence of photon flux densities was changed, stomatal conductance continued to change in the direction appropriate to the previous sequence for at least 1 h. The presence of a transportable chemical intermediate is postulated, the amount or activity of which would take some time to change after a change in photon flux density. The presence of such an intermediate could account for both the sluggishness of the stomata and the carry over effect. As a result of the sluggish behaviour and carryover, in the field stomatal conductance will tend to follow the general trend in photon flux density and will be very insensitive to short term fluctuations. 相似文献
18.
Photosynthetic carbon gain in rapidly fluctuating light is controlled by stomatal conductance, activation of ribulose-1,5-bisphosphate
carboxylase-oxygenase, a fast induction step in the regeneration of ribulose-1,5-bisphosphate, and the build-up of pools of
photosynthetic intermediates that allow post-illumination CO2 fixation. Experimental work over recent years has identified and characterised these factors. A physiologically-based dynamic
model is described here that incorporates these factors and allows the simulation of carbon gain in response to any arbitrary
sequence of light levels. The model output is found to conform well to previously reported plant responses of Alocasia macrorrhiza (L.) G. Don. observed under widely differing conditions. The model shows (i) responses of net assimilation rate and stomatal
conductance to constant light levels and different CO2 concentrations that are consistent with experimental observations and predictions of a steady-state model; (ii) carbon gain
to continue after the end of lightflecks, especially in uninduced leaves; (iii) carbon gain to be only marginally reduced
during low-light periods of up to 2 s; (iv) a fast-inducing component in the regeneration of ribulose-1,5-bisphosphate to
be limiting for up to 60 s after an increase in light in uninduced leaves: the duration of this limitation lengthens with
increasing CO2 concentration and is absent at low CO2 concentration; (v) oxygen evolution to exceed CO2 fixation during the first few seconds of a lightfleck, but CO2 fixation to continue after the end of the lightfleck whereas oxygen evolution decreases to low-light rates immediately. The
model is thus able to reproduce published responses of leaves to a variety of perturbations. This provides good evidence that
the present formulation of the model includes the essential rate-determining factors of photosynthesis under fluctuating light
conditions.
Received: 27 January 1997 / Accepted: 15 April 1997 相似文献
19.
植物气孔导度的环境响应模拟及其尺度扩展 总被引:5,自引:0,他引:5
气孔导度是衡量植物和大气间水分、能量及CO2平衡和循环的重要指标,探讨气孔导度与环境因子的关系及其模拟,以及气孔导度在叶片、冠层及区域尺度间的尺度转换及累积效应,对更好地认识植被与大气间的水热运移过程,合理评价植被在陆面过程中的地位和作用都具有重要意义。从植物气孔导度与环境因子的关系、气孔导度模拟以及尺度扩展三个方面,对前人的研究成果进行了概括总结。从叶片和冠层两个尺度出发,归纳总结了前人对于不同植物气孔导度与环境因子关系的研究成果,发现由于不同植物的遗传特性、测定时的环境、时间尺度的不同,以及未考虑各个环境因子的相互作用对气孔导度的影响,由此得到的气孔导度与环境因子之间的关系也不尽一致。对各单一环境因子与气孔导度的关系,给出了生理学解释,从根本上说明了环境因子变化对气孔导度的影响,而研究环境因子对气孔导度的综合影响时,应对各环境因子进行系统控制与同步观测。模拟计算植物气孔导度的模型主要有Jarvis模型和BWB模型两类,这些模型的模拟能力随着研究对象、试验区域、环境条件的改变而存在一定的差异,在具体使用时应结合实际情况选择最优模型进行模拟。除上述常用模型外,还总结了其他学者分别从不同角度提出的新的模型,对现有气孔导度模型进行了全面的总结。从叶片-冠层、冠层-区域两个方面归纳总结了前人关于气孔导度尺度扩展的研究成果,发现叶片-冠层的尺度扩展研究较成熟而冠层-区域的尺度扩展在模拟精度的验证方面存在困难。针对以下几个方面提出了今后气孔导度的研究重点:(1)结合研究对象所在的区域及环境条件,选择最优模型进行模拟;(2)综合考虑环境因子之间的相互作用及其对气孔导度的累积影响;(3)BWB模型与光合模型的耦合;(4)提高大尺度范围内的气孔导度模拟精度。 相似文献
20.
Patchy stomatal movements were induced in leaves of Helianthus annuus L. and Xanthium strumarium L. by increasing Δw and decreasing light in a gas-exchange cuvette. The dynamics of the patchy movements were recorded and analysed using images of chlorophyll fluorescence, and the influence of heterogeneous stomatal activity on gas-exchange measurements of whole-leaf stomatal conductance was explored. Image series and gas-exchange measurements from two contrasting 100 min experiments are presented. One series of images, taken using Helianthus annuus, was characterized by strongly oscillating stomatal conductance induced by a decrease in light at high Δw. Fluorescence analysis revealed that individual patches of the leaf displayed a variety of behaviours (from static to strongly oscillating fluorescence), which, when averaged, matched the time dependence of the oscillating stomatal conductance measured by gas-exchange techniques. During the second series of images, taken using Xanthium strumarium, stomatal conductance (measured with gas exchange) declined slightly after an increase in Δw, and then maintained a steady state. Again, some patches in this leaf showed highly dynamic qNP, although on the whole qNP varied without any obvious pattern or frequency. When all patch activity in this series was averaged, it paralleled the steady whole-leaf stomatal conductance determined by gas-exchange measurements. It is clear from this work that coordinated patchy stomatal movements can contribute significantly to the dynamics of whole-leaf stomatal conductance, and, in contrast, that dynamic but uncoordinated patchy movements can average to produce a steady gas-exchange trace. 相似文献