首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been reported that a 183 residue fragment, consisting of the two RNA-binding domains (RBD1- RBD2) of the Drosophila melanogster Sex-lethal (Sxl) protein, strongly binds an oligonucleotide of the target RNA sequence (5'-GUUUUUUUUC-3') that regulates alternative splicing, and forms four or five hydrogen bonds with the imino groups of the RNA. In the present study, we used site-directed mutagenesis to improve the solubility of the didomain fragment of Sxl, and confirmed that this mutant fragment forms hydrogen bonds with the target RNA in the same manner as that of the wild-type fragment. The mutant fragment was shown to bind the cognate RNA sequences GUUUUUUUUC and AUUUUUUUUC more tightly than UUUUUUUUC. By using a [3-15N]uridine phosphoramidite, we synthesized a series of15N-labeled target RNAs, in which one of the uridine residues was specifically replaced by [3-15N]uridine. By observing the imino1H-15N coupling of the labeled uridine residue, we assigned all four of the hydrogen-bonded imino protons to U1, U2, U5 and U6, respectively, of the target RNA. The imino protons of U2 and U6 exhibited nuclear Overhauser effects with aliphatic protons of the protein. All these results indicate that the A/G, U1, U2, U5 and U6 residues in the target sequence of (G/A)UUUUUUUU are specifically recognized by the two RNA-binding domains of the Sxl protein.  相似文献   

2.
Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sxl) protein fragment, consisting of two RBDs (RBD1–RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5-terminus of a uridine stretch. First, we prepared a [5-2H]uridine phosphoramidite, and synthesized a series of 2H-labeled RNAs, in which all of the uridine residues except one were replaced by [5-2H]uridine in the target sequence, GU8C. By observing the H5-H6 TOCSY cross peaks of the series of 2H-labeled RNAs complexed with the Sxl RBD1–RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU2GU8, AU8, and UAU8, were assigned by comparison with those of GU8C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1 resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2-endo ribose conformation in the complex.  相似文献   

3.
The radioactivity of RNA, DNA and proteins in the liver, muscles and cerebrum of 30-day-old rats after labelling with [3H]uridine, [14C]uridine, [3H]cytidine or [3H]orotic acid was measured. It was found that after administration of [3H]uridine, the proteins were 5 - 10 times more radioactive than the RNA. After administration of [14C]uridine, the proteins were 1 - 2 times more heavily labelled than the RNA. Hydrolysis of the proteins followed by chromatography of the amino acids revealed that the protein labelling was mostly due to [3H]glutamate. In the liver, [3H]orotic acid produced very specific labelling of the RNA. The radioactivity of the proteins is very slight. However, the specific labelling of the RNA in the muscles and cerebrum is not so pronounced with this precursor. [3H]Cytidine is an ideal precursor for RNA. The labelling of protein in all three organs examined is very slight, and furthermore, the specific activity of the RNA is 10 - 20 times higher than after labelling with uridine. We were also able to show that after labelling with radioactive uridine, the method of isolation of RNA by alkaline hydrolysis gives incorrect results, because [3H]amino acids interfere with the measurement of the specific activity of the RNA. The heavy labelling of proteins by [3H]-uridine must also be taken into account in histoautoradiography, because our experiments showed that in liver, the proteins in the cell nucleus are 3 times as radioactive as the nucleic acids. The particulate components of the cytoplasm are even 20 times more radioactive than the nucleic acids.  相似文献   

4.
Dillerent chicken tissues are shown to display a clearly pronounced specificity relative to [2-14C] orotic acid and [5-3H]uridine as precursors of synthesis of the pool and RNA pyrimidine nucleotides. The fraction of pyrimidine nucleotides synthetized relative to the reserve pathway (uridine utilization) decreases in the series: kidneys greater than duodenum mucosa greater than lungs greater than liver greater than pancreas greater than bone marrow greater than brain greater than spleen. The results of [2-14C]orotic acid and [53H]uridine incorporation into UMP and CMP of the liver and spleen tissues RNA are interpreted in terms of the concept on existence of separate pools of pyrimidine phosphates--RNA precursors.  相似文献   

5.
The epithelium of rat small intestine was radioautographed to examine whether RNA is synthesized by the salvage pathway as shown after [3H]uridine injection or by the de novo pathway as shown after [3H]orotic acid injection. The two modes of RNA synthesis were thus investigated during the migration of columnar cells from crypt base to villus top, and the rate of synthesis was assessed by counting silver grains over the nucleolus and nucleoplasm at six levels along the duodenal epithelium--that is, in the base, mid, and top regions of the crypts and in the base, mid, and top regions of the villi. Concomitant biochemical analyses established that, after injection of either [5-3H]uridine or [5-3H]orotic acid: (a) buffered glutaraldehyde fixative was as effective as perchloric acid or trichloracetic acid in insolubilizing the nucleic acids of rat small intestine; (b) a major fraction of the nucleic acid label was in RNA, that is, 91% after [3H]uridine and 72% after [3H]orotic acid, with the rest in DNA; and (c) a substantial fraction of the RNA label was in poly A+ RNA (presumed to be messenger RNA). In radioautographs of duodenum prepared after [3H] uridine injection, the count of silver grains was high over nucleolus and nucleoplasm in crypt base cells and gradually decreased at the upper levels up to the villus base. In the rest of the villus, the grain count over the nucleolus was negligible, while over the nucleoplasm it was low but significant. After [3H]-orotic acid injection, the number of silver grains over the nucleolus was negligible at all levels, whereas over the nucleoplasm the number was low in crypt cells, but high in villus cells with a peak in mid villus. The interpretation is that, except for a small amount of label incorporated into DNA from either precursor by crypt cells, the bulk of the label is incorporated into RNA as follows. In the crypts, cells make almost exclusive use of uridine, that is, of the salvage pathway, for the synthesis of ribosomal RNA in the nucleolus and of messenger and transfer RNA in the nucleoplasm. However, when cells pass from crypt to villus, they mainly utilize orotic acid--i.e., the de novo pathway--for the synthesis of messenger and transfer RNA within the nucleoplasm.  相似文献   

6.
Vaccinia virus, strain WR, was propagated in HeLa cells, L mouse fibroblats, or primary chicken embryo fibroblasts in the presence of [5- (3)H]uridine. Carefully purified virions were found to contain significant amounts of labeled trichloroacetic acid-precipitable material which was rendered acid soluble when digested with pancreatic RNase or hydrolyzed in alkali. Controlled degradation of virions with Nonidet P-40 and 2-mercaptoethanol demonstrated that 65 to 80% of the [5- (3)H]uridine-labeled molecules resided in the viral core. When the total nucleic acids were extracted from viral cores prepared from virions propagated in HeLa cells, 30 to 50% of the total incorporated [5- (3)H]uridine was found in RNA; in L mouse fibroblasts, 40 to 50%; in primary chicken embryo fibroblasts, 50 to 60%. The RNA molecules do not appear to be covalently linked to the viral DNA genome but sediment in sodium dodecyl sulfate-sucrose gradients as 8 to 10S species relative to ribosomal RNA.  相似文献   

7.
RNA synthesis in response to exogenous nucleoside precursors was studied in a suspension culture of rose cells. Exponentially growing and resting cells were prelabeled with [3H] uridine, an excess of unlabeled uridine added, and subsequent isotopic incorporation into nuclear and ribosomal fractions measured. The data were compared to control values in cells continuously labeled in the absence of unlabeled uridine. Addition of uridine to the growing culture reduced the further uptake, and incorporation of [3H] uridine into RNA. In contrast, in resting cells, the addition of uridine (or, purine nucleosides) enhanced the apparent utilization of [3H] uridine in RNA synthesis by 2- to 4-fold.  相似文献   

8.
We have previously shown that 3,5,3'-triiodo-L-thyronine (L-T3) stimulates cell growth and a 4- to 8-fold increase in growth hormone mRNA in GH1 cells. These effects appear to be mediated by a thyroid hormone nuclear receptor with an equilibrium dissociation constant for L-T3 of 0.2 nM and an abundance of about 10,000 receptors per cell nucleus. In this report, we show that L-T3 exerts a pleiotypic effect on GH1 cells to rapidly (within 2 h) stimulate [3H]uridine uptake to a maximal value of 2.5- to 3-fold after 24 h. This results from an increase in the number of functional uridine "transport sites" as shown by studies documenting an increase in the apparent Vmax with no change in the Km, 17 microM. Although the labeling of the cellular uridine pool and pools of all phosphorylated uridine derivatives was increased by L-T3, there was no change in the relative amounts of the individual pools in cells incubated with or without hormone. The intracellular concentration of [3H]uridine was estimated to be similar to that of the medium, suggesting that facilitated transport mediates [3H]uridine uptake. That this increase in [3H]uridine transport was nuclear receptor-mediated is supported by the excellent correspondence of the L-T3 dose-response curve for [3H]uridine uptake and that for L-T3 binding to receptor. Finally, inhibition of protein synthesis by cycloheximide and RNA synthesis by actinomycin D demonstrated that the L-T3 effect required continuing protein and RNA synthesis. These results are consistent with an effect of the L-T3-nuclear receptor complex to increase uridine uptake in GH1 cells by altering the expression of gene(s) essential for the transport process.  相似文献   

9.
[3H]uridine and [3H]orotic acid were equally utilized for labelling of RNA in mouse liver. Incorporation of [3H]cytidine was 2-3 times as high as that of [3H]-labelled uridine or orotic acid. These results differ from findings in rat liver, where both cytidine and orotic acid are better utilized for RNA labelling than is uridine. The ratio between liver RNA [3H]-activity and volatile [3H]-activity was 2, 3 and 13, respectively, at 300 min after injection of labelled uridine, orotic acid and cytidine, indicating an efficient chanelling of cytidine into liver anabolic pathways.  相似文献   

10.
B. Hause  C. Wasternack 《Planta》1988,176(1):51-59
Compartmentation of uridine 5-triphosphate (UTP) was studied during the nucleolar synthesis of cytoplasmic ribosomal RNA (cyt-rRNA) and the synthesis of cytoplasmic transfer RNA (cyt-tRNA) in the nuclear matrix as well as the synthesis of mitochondrial ribosomal RNA (mt-rRNA) in tomato (Lycopersicon esculentum Mill. cv. Lukullus) cell-suspension culture using the approach of Wiegers et al. (Eur. J. Biochem. 64, 535–540, 1976). Before measurements were made, it was ensured that: (i) there was steady-state labeling of all RNAs studied as well as UTP; (ii) there was stability of cyt-tRNA and cyt-rRNA; (iii) there was no label randomization through degradation of [3H]uridine; (iv) there were significant differences in the specific radioactivity of UTP, the final immediate precursor of RNA, after supplying the cells with two different exogenous [3H]uridine concentrations.By comparing the steady-state specific radioactivity of UTP with that of cyt-tRNA and cyt-18S rRNA during constant [3H]uridine supply, we found that the three molecules had equal specific radioactivities which, however, differed significantly from that of the mt-rRNA. With a 20-fold higher uridine concentration, i.e. a 20-fold lower specific radioactivity of exogenous [3H]uridine, the specific radioactivity of cyt-rRNA, cyt-tRNA and UTP decreased proportionally whereas that of mt-RNA increased. These results argue against different UTP pools during synthesis of cyt-rRNA and cyt-tRNA, but indicate compartmentation of UTP during rRNA synthesis in the nucleus and the mitochondria of tomato cells.Abbreviations CMP cytidine 5-monophosphate - cyt-rRNA cytoplasmic ribosomal RNA - cyt-tRNA cytoplasmic transfer RNA - mt-rRNA mitochondrial rRNA - NC nitrocellulose - PAGE polyacrylamide gel electrophoresis - TLC thin-layer chromatography - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol - UDP uridine 5-diphosphate - UMP uridine 5-monophosphate - UTP uridine 5-triphosphate  相似文献   

11.
The effects of insulin on embryonic chicken cartilage in organ culture and the dependence of these effects on essential amino acids have been studied. In the presence of all essential amino acids, insulin: (1) increases 2-deoxy-D-glucose and alpha-aminoisobutyric acid uptake; (2) increases [5(-3H] uridine flux into uridine metabolites and the intracellular UTP pool; (3) expands the size of the intracellular UTP pool; (4) does not change the specific activity of the UTP pool; and (5) stimulates RNA, proteoglycan, and total protein synthesis. In lysine (or other essential amino acid)-deficient medium, the effects of insulin are different. While insulin stimulates incorporation of [5(-3)H] uridine into RNA, it does so by increasing the specific activity of the UTP pool without increasing RNA synthesis. Insulin stimulates 2-deoxy-D-glucose and alpha-aminoisobutyric acid uptake but no longer stimulates proteoglycan, total protein, or RNA synthesis or expands the size of the UTP pool. These data indicate that there are amino acid dependent and independent effects of insulin on cartilage. Transport processes are amino acid independent, while synthetic processes are amino acid dependent.  相似文献   

12.
3H-labelled metabolites were determined in the perchloric acid-soluble fraction of blood plasma and liver of adult male Wistar rats, following the application of [5 - 3H]uridine. Ten minutes after the injection of uridine, only 20% of the total 3H activity of the plasma could be attributed to [3H]uridine. The remaining radioactivity was found chiefly in [3H]uracil (40%) and 3H2O (20%). In the liver, at 10 min, [3H]-uridine and [3H]uracil together accounted for less than 0.5% of the total radioactivity; about 70% of the radioactivity was due to [3H]beta-alanine, and 15% to 3H2O. 45 min after the injection, 70% of the radioactivity in the plasma was due to 3H2O, whereas uridine and uracil represented about 4% and 6%, respectively. At this time, about 55% of the radioactivity in the liver was due to [3H]beta-alanine, about 40% to 3H2O, and about 5% to unidentified metabolites; [3H]uridine and [3H]uracil were not observed. A comparison of the rate of catabolism of [5-3H]-uridine, [5-3H]cytidine and [6-3H]thymidine showed that cytidine is degraded in the organism 25 times more slowly than uridine or thymidine. The biological half lives for the total degradation of the [3H]nucleosides to 3H2O, based on the values in the plasma, were: uridine 1.1 h; thymidine 1.3 h; cytidine 25 h. Furthermore, the turnover time of exogenous uridine in the plasma was found to be 9 min, which gives a half life of 6 min for the metabolism of exogenous uridine to uracil.  相似文献   

13.
The relationship between changes in the intracellular free Ca2+ concentration, [Ca2+]i, and the initiation of proliferation of murine B cells after the addition of mitogens and activators was studied. The effects of lipopolysaccharide (LPS), 12-O-tetradecanoyl phorbol-13-acetate (TPA), rabbit IgG antimouse Fab (IgG RAM Fab), and its F(ab')2 fragment (F(ab')2 anti-Fab) on the [Ca2+]i were measured using the fluorescent calcium indicator Fura-2. In parallel experiments, DNA and/or RNA synthesis were measured by assaying [3H]thymidine and/or [3H]uridine uptake. LPS stimulated a 20-120 X increase in the [3H]thymidine uptake, and a 3-7 X increase in [3H]uridine uptake without inducing any change in the [Ca2+]i. TPA induced a marginal increase in [3H]thymidine and [3H]uridine uptake, without effecting any change in the [Ca2+]i. In contrast, low doses of IgG RAM Fab produced a triphasic change in the [Ca2+]i, but had no effect on the [3H]thymidine or [3H]uridine uptake, even at much higher concentrations. Similarly, low doses of the F(ab')2 fragment induced sizable increases in the [Ca2+]i without affecting the [3H]nucleoside uptake. However, higher concentrations of F(ab')2 anti Fab increased the [3H]thymidine uptake and [3H]uridine uptake, while also increasing the [Ca2+]i. Significantly, pretreating the cells with TPA for 3 min virtually abolished the [Ca2+]i increase induced by IgG RAM Fab while simultaneously potentiating an increase in the IgG RAM Fab-induced [3H]thymidine uptake 85-fold. In the presence of TPA, IgG RAM Fab also induced a 2- to 30-fold increase in [3H]uridine uptake. Similarly, TPA virtually abolished the [Ca2+]i increase induced by the F(ab')2 anti-Fab fragment, yet it stimulated a F(ab')2 anti-Fab-induced uptake of [3H]thymidine and [3H]uridine by 120 and 10 times, respectively.  相似文献   

14.
15.
A variety of compounds were assessed for their ability to induce morphological differentiation and to affect the synthesis of RNA in uncloned mouse neuroblastoma cells in culture. The stimulation of morphological differentiation in uncloned cells after exposure for 48 hours to concentrations of 3 times 10-7 to 3 times 10-4 M papavarine or 10-9 to 10-3 M dibutyryl adenosine 3':5'-monophosphate (dibutyryl-cAMP) was associated, in part, with a concentration-dependent decrease in incorporation of [5-3H]uridine into ribosomal RNA (rRNA) and heterogeneous RNA (HnRNA). The latter effect on cellular RNA produced by papavarine occurred within 1 hour after its addition to the medium and was associated with impaired uptake of radioactive precursor into uridine nucleotides and reduction in the intracellular concentration of uridine 5'-triphosphate (UTP). Dibutytyl-cAMP produced a decreased in the specific radioactivity of UTP without affecting the concentration of UTP in the tumor cells. The effects of papavarine and dibutyryl-cAMP could be distinguished further by the 50% reduction of acetylcholinesterase activity produced by papavarine, but not by dibutyryl-cAMP. Papavarine did not, however, reduce the cellular level of the soluble enzyme, adenine phosphoribosyltransferase. Sodium butyrate, while producing morphological effects similar to those of papavarine and dibutyryl-cAMP at equimolar concentrations, caused no significant changes in the incorporation of [5-3H]uridine into rRNA and HnRNA; however, acetylcholinesterase activity was stimulated 6- to 7-fold above control levels. In contrast to the other differentiating agents examined, addition of 10-9 to 3 times 10-4 M concentrations of cAMP to the tissue culture medium enhanced morphological differentiation of nueroblastoma cells, and caused a 10- to 20-fold stimulation of the incorporation of [5-3H]uridine into rRNA and HnRNA at concentrations of 10-4 M and higher. This effect observed only at high concentrations of cyclic nucleotide was accompanied by an elevation in the specific acitivty of UTP, These studies suggest that the morphological response of neuroblastoma cells is not necessarily associated with concomitant alterations in the synthesis of RNA with agents other than cAMP. Observed changes in incorporation of [5-3H]uridine into RNA appear in most instances to be due to alterations in the uptake of uridine, and in the pool size and specific radioactivity of UTP.  相似文献   

16.
Urinary proteins from human leukemic patients have been found to alter quantitatively macromolecular synthesis in primary mouse bone marrow cultures. Urinary protein-stimulated incorporation of [3H]uridine into RNA was found after 1 day of culture. Increased levels of adenine phosphoribosyltransferase and lysozyme were demonstrable at 3 and 5 days, respectively, with urinary protein-supplemented cultures. The incorporation of 3H-labeled deoxynucleosides into DNA was higher in the presence of urinary proteins after 2 days of culture. The rate of incorporation of [3H]deoxyuridine into DNA was strongly inhibited by 10(-5) M Methotrexate and 10(-6) M 5-fluorodeoxyuridine, however, the effect of urinary proteins on incorporation of [3H]uridine into RNA and lysozyme accumulation were not inhibited. Urinary proteins also stimulated the formation of "colonies" (groups of at least 30 cells) in media containing methylcellulose. This latter phenomenon was also not inhibited by 10(-5) M Methotrexate or 10(-6) M 5-fluorodeoxyuridine. The results of these studies are consistent with the postulate that in the presence of human urinary proteins, mouse bone marrow cells in culture proceed to a phenotype characteristic of circulating peripheral white cells.  相似文献   

17.
Kinetic analyses of mRNA and 28-S RNA labeling [3H]uridine revealed distinctly different steady-state specific radioactivities finally reached for uridine in mRNA and 28-S RNA when exogenous [3H]uridine was kept constant for several cell doubling times. While the steady-state label of (total) UTP and of uridine in mRNA responded to the same extent to a suppression of pyrimidine synthesis de novo by high uridine concentrations in the culture medium, uridine in 28-S RNA was scarcely influenced. Similar findings were obtained with respect to labeling of cytidine in the various RNA species due to an equilibration of UTP with CTP [5-3H]Uridine is also incorporated into deoxycytidine of DNA, presumably via dCTP. The specific radioactivity of this nucleosidase attained the same steady-state value as UTP, uridine in mRNA and cytidine in mRNA. The data indicate the existence of two pyrimidine nucleotide pools. One is a large, general UTP pool comprising the bulk of the cellular UTP and serving nucleoplasmic nucleic acid formation (uridine and cytidine in mRNA, deoxycytidine in DNA). Its replenishment by de novo synthesis can be suppressed completely by exogenous uridine above 100 muM concentrations. A second, very small UTP (and CTP) pool with a high turnover provides most of the precursors for nucleolar RNA formation (rRNA). This pool is not subject to feedback inhibition by extracellular uridine to an appreciable extent. Determinations of (total) UTP turnover also show that the bulk of cellular RNA (rRNA) cannot be derived from the large UTP pool.  相似文献   

18.
During the first 48h of compensatory renal hypertrophy induced by unilateral nephrectomy, RNA content per cell increased by 20-40%. During this period, rates of RNA synthesis derived from the rates of labelling of UTP and RNA after a single injection of [5-(3)H]uridine showed no change in the rate of RNA synthesis (3.1nmol of UTP incorporated into RNA/min per mg of RNA). ATP and ADP pools were not changed. The rate of RNA synthesis was considerably in excess of the increment of total RNA appearing in the kidneys. With [5-(3)H]uridine as label, only continuous infusion for 24h could produce an increase (60%) in the specific radioactivity of renal rRNA in mice with contralateral nephrectomies. With a single injection of [methyl-(3)H]methionine used to identify methyl groups inserted into newly synthesized rRNA, the specific radioactivity of this rRNA was unchanged 5h after contralateral nephrectomy, increased by 60% at 9-48h, and returned to normal values at 120h. Most RNA synthesized in both nephrectomized and sham-nephrectomized mice has a short half-life. Since total cellular RNA content increases in compensatory hypertrophy despite unchanged rates of rRNA synthesis, the accretion of RNA might involve conservation of ribosomal precursor RNA or a change in rate of degradation of mature rRNA.  相似文献   

19.
The metabolism of [5-3H]uridine and the incorporation of the precursor into liver RNA was studied in developing (13-day-old) and adult (45-day-old) mice. Different time-courses of labelling and increased amounts of labelled catabolic products of uridine were found in liver and blood of developing mice compared with adult animals. This is suggested to be a consequence of enlarged metabolite pools resulting from a lower total amount of uracil-degrading enzymes in the developing mice. The labelling of the uracil nucleotides was decreased in the developing liver. However, in spite of a lower specific radioactivity of UTP, the RNA-specific radioactivity of developing liver was increased compared with adult liver. Also the labelling of liver RNA with [6-14C]orotic acid was found to be increased in developing mice, thus indicating a higher rate of RNA synthesis in these animals. A more pronounced difference in liver RNA labelling between the developing and the adult mice obtained with the use of [14C]orotic acid than with [3H]uridine may suggest that the de novo pathway, relative to the salvage pathways, is more important in developing than in adult liver.  相似文献   

20.
Dorsal root ganglia, excised from the lumbar roots of the sciatic nerve of white Leghorn chicken embryos 6-13 days of age, were incubated usually for 5 h, at 36 degrees C in 20 microliters of a bicarbonate-buffered physiological salt solution containing 5.5 mM glucose. [U-14C]Glucose, [1-14C]glucose, [6-14C]glucose, or [5-3H]uridine was also added. Lipid synthesis and lactate output were measured by incorporation of 3H from [5-3H]uridine. Glucose uptake and labeled lactate output declined rapidly from 6 to 8-9 days of age, more slowly thereafter. Synthesis of lipids was relatively constant throughout the ages studied, without the increased rate at intermediate ages seen previously in sympathetic ganglia of the same species. RNA synthesis declined progressively throughout the ages studied. The output of C-6 of glucose to CO2 was about the same at all ages, whereas that of C-1 declined rapidly from 6 to 7 days of age and then more slowly, but always remained higher than that of C-6 and thus indicated that much glucose was metabolized via the hexosemonophosphate shunt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号