首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Echinochloa phyllopogon was grown hydroponically under four root zone gassing treatments to determine aeration effects on the growth and development of the plant root system. Although mesocotyl growth and the number of nodal roots were unaffected by the treatments, other aspects of plant growth were altered. Shoot growth was reduced by hypoxic (5 kPa partial pressure O2 in nitrogen gas) and anoxic conditions (O2 free nitrogen gas), but not by ethylene (0.1 ppm in air). Seminal root growth was unaffected by hypoxia or ethylene treatments, but was reduced under anoxia. Hypoxic environments stimulated the emergence of roots along the length of the mesocotyl when compared to aerobic controls; anoxic and ethylene treatments had no significant effects. Mesocotyl roots elongated from primordia that were produced de novo in response to the hypoxic treatment. Under hypoxic conditions, aerenchyma was present in the cortex of nodal roots and to a lesser extent in seminal roots, but mesocotyl roots were devoid of aerenchyma under these conditions. The results are compared with the literature concerning flooding and aeration effects on growth and development in other species.  相似文献   

2.
He CJ  Drew MC  Morgan PW 《Plant physiology》1994,105(3):861-865
Either hypoxia, which stimulates ethylene biosynthesis, or temporary N starvation, which depresses ethylene production, leads to formation of aerenchyma in maize (Zea mays L.) adventitious roots by extensive lysis of cortical cells. We studied the activity of enzymes closely involved in either ethylene formation (1-amino-cyclopropane-1-carboxylic acid synthase [ACC synthase]) or cell-wall dissolution (cellulase). Activity of ACC synthase was stimulated in the apical zone of intact roots by hypoxia, but not by anoxia or N starvation. However, N starvation, as well as hypoxia, did enhance cellulase activity in the apical zone, but not in the older zones of the same roots. Cellulase activity did not increase during hypoxia or N starvation in the presence of aminoethoxyvinylglycine, an inhibitor of ACC synthase, but this inhibition of cellulase induction was reversed during simultaneous exposure to exogenous ethylene. Together these results indicate both the role of ethylene in signaling cell lysis in response to two distinct environmental factors and the significance of hypoxia rather than anoxia in stimulation of ethylene biosynthesis in maize roots.  相似文献   

3.
4.
From the poles to the tropics flooding is a powerful discriminator in plant distribution. Although plants can be divided globally as to whether or not they are tolerant of high water tables, it does not follow that all flood-tolerant species achieve their ability to survive flooding by similar adaptations. Flooding implies a periodic but temporary rise of the water table, hence plants that live in such areas have an amphibious life style. Amphibious plants have to adjust, not only to inundation and the dangers of oxygen deprivation, but also to the eventual lowering of water tables and often sudden re-exposure to a fully aerated environment and the lack of the physical support that is provided by flooding. In this respect they are distinct from aquatic species that live constantly in water. It is often tacitly assumed that for amphibious species flooding is the stressed condition and non-flooding the norm. This pre-judgement is not appropriate, particularly as in many habitats the flooded condition predominates for a longer part of the year than the unflooded. For amphibians, re-adapting from the aquatic to the terrestrial habitat requires specialised adaptations, just as much as a change from unflooded to flooded. Many flood-tolerant species, including surface-rooting grasses and sedges, may not be tolerant of anoxia, and instead prevent the accumulation of an oxygen debt in submerged organs by aeration mechanisms, including oxygen diffusion through aerenchyma, thermally induced mass movement of air, and the elongation of submerged shoots. In other species, and particularly in perennial plants with buried perennating organs, flooding can impose prolonged periods of anaerobiosis (anoxia). Being able to survive such oxygen deprivation requires (1) energy reserves sufficient for cell maintenance, (2) the prevention of cytoplasmic acidosis under anoxia, and (3) the anaerobic mobilisation of starch reserves. Re-entry to the aerobic habitat is facilitated by (4) the dispersal and excretion of products that transfer hydrogen from anoxic or hypoxic tissues, either to the external environment, or to parts of the plant with access to oxygen, before the anaerobic tissues return to air, and (5) anti-oxidative activity to minimise post-anoxic injury.  相似文献   

5.
A hypothesis that ethylene causes aerenchyma development in waterlogged plants through increased cellulase activity was tested with sunflower, Helianthus annuus L. Treatment with commercial cellulase induced aerenchyma development in sunflower stem sections. Some of the cellulase-treated cortical cells enlarged radially and some disintegrated, leading to intercellular space. Cell disintegration started with progressive plasmolysis and severe plasmolysis was associated with or was apparently followed by cell wall breakdown. Localized stem treatment of an intact sunflower with ethylene increased cellulase activity in that part of the stem. Localized stem treatment of an intact sunflower with a water jacket increased cellulase activity in that part of the stem. When the lower part of the sunflower was waterlogged, the cellulase activity in the waterlogged stem increased. Present and earlier results suggest that aerenchyma development is a plant adaptation to waterlogging conditions. The deficiency of oxygen in a waterlogged plant triggers the anaerobic stimulation of ethylene production, which causes an increase in cellulase activity leading to aerenchyma development and enhancing the transport of oxygen to the roots. It is proposed that there is competition between neighboring cortical cells for water after an increase in cell wall plasticity by the action of cellulase. The competition causes progressive plasmolysis and eventual disintegration of weaker cells.  相似文献   

6.
The development and regulation of aerenchyma in waterlogged conditions were studied in the seminal roots of wheat. Evans blue staining and the first cell death position indicated that the cortical cell death began at the root mid-cortex cells in flooding conditions. Continuous waterlogging treatment caused the spread of cell death from the mid-cortex to the neighboring cells and well-developed aerenchyma was formed after 72 h. Meanwhile, the formation of radial oxygen loss barrier was observed in the exodermis owing to the induction of Casparian bands and lignin deposition. Analysis of aerenchyma along the wheat root revealed that aerenchyma formed at 10 mm from the root tip, significantly increased toward the center of the roots, and decreased toward the basal region of the root. In situ detection of radial oxygen species (ROS) showed that ROS accumulation started in the mid-cortex cells, where cell death began indicating that cell death was probably accompanied by ROS production. Further waterlogging treatments resulted in the accumulation of ROS in the cortical cells, which were the zone for aerenchyma development. Accumulation and distribution of H2O2 at the subcellular level were revealed by ultracytochemical localization, which further verified the involvement of ROS in the cortical cell death process (i.e., aerenchyma formation). Furthermore, gene expression analysis indicated that ROS production might be the result of up-regulation of genes encoding for ROS-producing enzymes and the down-regulation of genes encoding for ROS-detoxifying enzymes. These results suggest that aerenchyma development in wheat roots starts in the mid-cortex cells and its formation is regulated by ROS.  相似文献   

7.
The relationship between ethylene production, 1-aminocyclopropane-l-carboxylic acid (ACC) concentration and aerenchyma formation (ethylene-promoted cavitation of the cortex) was studied using nodal roots of maize (Zea mays L. cv. LG11) subjected to various O2 treatments. Ethylene evolution was 7–8 fold faster in roots grown at 3 kPa O2 than in those from aerated solution (21 kPa O2), and transferring roots from aerated solution to 3 kPa O2 enhanced ethylene synthesis within less than 2 h. Ethylene production and ACC accumulation were closely correlated in different zones of hypoxic roots, regardless of whether O2 was furnished to the roots through aerenchyma or external solution. Both ethylene production and ACC concentrations (fresh weight basis) were more than 10-fold greater in the distal 0–10 mm than in the fully expanded zone of roots at 3 kPa O2. Aerenchyma formation occurred in the apical 20 mm of these roots. Roots transferred from air to anoxia accumulated less than 0. 1 nmol ACC (mg protein)-1 for the first 1.75 h; no ethylene was produced in this time. The subsequent rise in ACC levels shows that ACC can reach high concentrations even in the absence of O2, presumably due to a de-repression of ACC synthase. The hypothesis was therefore tested that anoxia in the apical region of the root caused enhanced synthesis of ACC, which was transported to more mature regions (10–20 mm behind the apex), where ethylene could be produced and aerenchyma formation stimulated. Surprisingly, exposure of intact root tips to anoxia inhibited aerenchyma formation in the mature root axis. High osmotic pressures around the growing region or excision of apices had the same effect, demonstrating that a growing apex is required for high rates of aerenchyma formation in the adjacent tissue.  相似文献   

8.
Roots of Zea mays L. developed more aerenchyma (cortical gas-filledspace) when partially deficient in oxygen (3 kPa) than whensupplied with air (20·8 kPa oxygen) in association withfaster production of ethylene (ethene). The possibility wastested that the additional ethylene production resulted fromdecreases in spermidine (spd) and spermine (spm) which share,with ethylene, a common precursor, S-adenosylmethionine. However,no decreases in spd and spm were seen in root tissue up to 4d-old. Removing oxygen completely also had little effect onspd and spm, but strongly suppressed both ethylene productionand aerenchyma formation. Partial oxygen shortage (3 kPa) increased the concentrationof putrescine (put), the precursor of spd and spm. This increasewas not a response to the extra ethylene formed by such rootssince ethylene treatment did no reproduce the effect. Applicationof inhibitors of put biosynthesis, difluoromethylarginine anddifluoromethylornithine, led to increased aerenchyma formation.Exogenous put inhibited the development of aerenchyma whilestimulating rather than inhibiting ethylene production, whentested in either air or 3 kPa oxygen. Thus, put appears to limitaerenchyma formation by suppressing ethylene action rather thanits production.Copyright 1993, 1999 Academic Press Ethylene, ethene, roots, aerenchyma, polyamines, oxygen shortage, anaerobiosis, environmental stress, Zea mays  相似文献   

9.
He CJ  Morgan PW  Drew MC 《Plant physiology》1992,98(1):137-142
Adventitious roots of maize (Zea mays L. cv TX 5855), grown in a well-oxygenated nutrient solution, were induced to form cortical gas spaces (aerenchyma) by temporarily omitting nitrate and ammonium (-N), or phosphate (-P), from the solution. Previously this response was shown (MC Drew, CJ He, PW Morgan [1989] Plant Physiology 91: 266-271) to be associated with a slower rate of ethylene biosynthesis, contrasting with the induction of aerenchyma by hypoxia during which ethylene production is strongly stimulated. In the present paper, we show that aerenchyma formation induced by nutrient starvation was blocked, under noninjurious conditions, by addition of low concentrations of Ag+, an inhibitor of ethylene action, or of aminoethoxyvinyl glycine, an inhibitor of ethylene biosynthesis. When extending roots were exposed to low concentrations of ethylene in air sparged through the nutrient solution, N or P starvation enhanced the sensitivity to exogenous ethylene at concentrations as low as 0.05 microliters ethylene per liter air, promoting a more rapid and extensive formation of aerenchyma than in unstarved roots. We conclude that temporary deprivation of N or P enhances the sensitivity of ethylene-responsive cells of the root cortex, leading to cell lysis and aerenchyma.  相似文献   

10.
Jackson, M. B., Fenning, T. M., and Jenkins, W. 1985 Aerenchyma(gas-space) formation in adventitious roots of rice (Oryza sativaL.) is not controlled by ethylene or small partial pressuresof oxygen.—J. exp. Bot. 36: 1566–1572. The extent of gas-filled voids (aerenchyma) within the cortexof adventitious roots of vegetative rice plants (Oryza sativaL. cv. RB3) was estimated microscopically from transverse sectionswith the aid of a computer-linked digitizer drawing board. Gas-spacewas detectable in 1-d-old tissue and increased in extent withage. After 7 d, approximately 70% of the cortex had degeneratedto form aerenchyma. The extent of the voids in 1-4-d-old tissuewas not increased by stagnant, poorly-aerated external environmentscharacterized by sub-ambient oxygen partial pressures and accumulationsof carbon dioxide and ethylene. Treatment with small oxygenpartial pressures, or with carbon dioxide or ethylene appliedin vigorously stirred nutrient solution also failed to promotethe formation of cortical gas-space. Furthermore, ethylene productionby rice roots was slowed by small oxygen partial pressures typicalof stagnant conditions. Silver nitrate, an inhibitor of ethylene action, did not retardgas-space formation; similarly when endogenous ethylene productionwas inhibited by the application of aminoethoxyvinylglycine(A VG), aerenchyma development continued unabated. Cobalt chloride,another presumed inhibitor of ethylene biosynthesis, did notimpair formation of the gas in rice roots nor did it decreasethe extent of aerenchyma even if A VG was supplied simultaneously.These results contrast with those obtained earlier using rootsof Zea mays L. We conclude that in rice, aerenchyma forms speedily even inwell-aerated environments as an integral part of ordinary rootdevelopment There seems to be little or no requirement for ethyleneas a stimulus in stagnant root-environments where aerenchymais likely to increase the probability of survival. Key words: Rice (Oryza sativa L.), ethylene, flooding, aeration, aerenchyma, environmental stress  相似文献   

11.

Background and Aims

Rice is one of the few crops able to withstand periods of partial or even complete submergence. One of the adaptive traits of rice is the constitutive presence and further development of aerenchyma which enables oxygen to be transported to submerged organs. The development of lysigenous aerenchyma is promoted by ethylene accumulating within the submerged plant tissues, although other signalling mechanisms may also co-exist. In this study, aerenchyma development was analysed in two rice (Oryza sativa) varieties, ‘FR13A’ and ‘Arborio Precoce’, which show opposite traits in flooding response in terms of internode elongation and survival.

Methods

The growth and survival of rice varieties under submergence was investigated in the leaf sheath of ‘FR13A’ and ‘Arborio Precoce’. The possible involvement of ethylene and reactive oxygen species (ROS) was evaluated in relation to aerenchyma formation. Cell viability and DNA fragmentation were determined by FDA/FM4-64 staining and TUNEL assay, respectively. Ethylene production was monitored by gas chromatography and by analysing ACO gene expression. ROS production was measured by using Amplex Red assay kit and the fluorescent dye DCFH2-DA. The expression of APX1 was also evaluated. AVG and DPI solutions were used to test the effect of inhibiting ethylene biosynthesis and ROS production, respectively.

Key Results

Both the varieties displayed constitutive lysigenous aerenchyma formation, which was further enhanced when submerged. ‘Arborio Precoce’, which is characterized by fast elongation when submerged, showed active ethylene biosynthetic machinery associated with increased aerenchymatous areas. ‘FR13A’, which harbours the Sub1A gene that limits growth during oxygen deprivation, did not show any increase in ethylene production after submersion but still displayed increased aerenchyma. Hydrogen peroxide levels increased in ‘FR13A’ but not in ‘Arborio Precoce’.

Conclusions

While ethylene controls aerenchyma formation in the fast-elongating ‘Arborio Precoce’ variety, in ‘FR13A’ ROS accumulation plays an important role.  相似文献   

12.
The structure and response to flooding of root cortical aerenchyma(air space tissue) in a variety of wetland (flood-tolerant)species was investigated and compared with some flood-intolerantspecies. In some species aerenchyma consisted of enlarged schizogenousintercellular spaces and in others aerenchyma formation involvedlysigeny. Two types of lysigenous aerenchyma were distinguished.In the first the diaphragms between lacunae were arranged radiallyand consisted of both collapsed and intact cells. In the secondtype, which was confined to the Cyperaceae, the radial diaphragmscontained intact cells, and stretched between them were tangentially-arrangeddiaphragms of collapsed cells. Flooding in sand culture generally increased root porosity (airspace content) although there were exceptions. The flood-intolerantspecies Senecio jacobaea produced aerenchyma but did not survivelong-term flooding. Among the flood-tolerant species, Filipendulaulmaria did not produce extensive aerenchyma even when flooded.Eriophorum angustifolium and E. vaginatum produced extensiveaerenchyma under drained conditions which was not increasedby flooding. In Nardus stricta root porosity was increased bylow nutrient levels as well as by flooding. Aerenchyma, root cortex, wetland plants, waterlogging, flooding-tolerance, Ammophila arenaria, Brachypodium sylvalicum, Caltha palustris, Carex curia, Eriophorum vaginatum, Filipendula ulmaria, Glyceria maxima, Hieracium pilosella, Juncus effusus, Myosotis scorpioides, Nardus stricta, Narthecium ossifragum, Phalaris arundinacea, Senecio jacobaea, Trichophorum cespitosum  相似文献   

13.
Flooded plant roots commonly form aerenchyma, which allows gas diffusion between shoots and roots. The programmed cell death involved in this induced aerenchyma formation is controlled by the plant hormone ethylene, as has been shown for maize (Zea mays). However, the role of ethylene is uncertain in wetland species that form constitutive aerenchyma (also under nonflooded conditions). The aim of this study is to shed light on the involvement of ethylene in constitutive aerenchyma formation in Juncus effusus. Plants of J. effusus and maize were treated with ethylene and inhibitors of ethylene action to determine the consequences for aerenchyma formation. Neither treatment with high ethylene concentrations nor with ethylene inhibitors resulted in changes in root aerenchyma in J. effusus. By contrast, ethylene increased aerenchyma development in maize unless ethylene action inhibitors were applied simultaneously. Similarly, root elongation was insensitive to ethylene treatment in J. effusus, but was affected negatively in maize. The data show that aerenchyma in J. effusus is highly constitutive and, in contrast to the inducible aerenchyma in maize, is not obviously controlled by ethylene.  相似文献   

14.
BACKGROUND AND AIMS: Aerenchyma formation is thought to be one of the important morphological adaptations to hypoxic stress. Although sponge gourd is an annual vegetable upland crop, in response to flooding the hypocotyl and newly formed adventitious roots create aerenchyma that is neither schizogenous nor lysigenous, but is produced by radial elongation of cortical cells. The aim of this study is to characterize the morphological changes in flooded tissues and the pattern of cortical aerenchyma formation, and to analyse the relative amount of aerenchyma formed. METHODS: Plants were harvested at 16 d after the flooding treatment was initiated. The root system was observed, and sections of fresh materials (hypocotyl, tap root and adventitious root) were viewed with a light or fluorescence microscope. Distributions of porosity along adventitious roots were estimated by a pycnometer method. KEY RESULTS: Under flooded conditions, a considerable part of the root system consisted of new adventitious roots which soon emerged and grew quickly over the soil surface. The outer cortical cells of these roots and those of the hypocotyl elongated radially and contributed to the development of large intercellular spaces. The elongated cortical cells of adventitious roots were clearly T-shaped, and occurred regularly in mesh-like lacunate structures. In these positions, slits were formed in the epidermis. In the roots, the enlargement of the gas space system began close to the apex in the cortical cell layers immediately beneath the epidermis. The porosity along these roots was 11-45 %. In non-flooded plants, adventitious roots were not formed and no aerenchyma developed in the hypocotyl or tap root. CONCLUSIONS: Sponge gourd aerenchyma is produced by the unique radial elongation of cells that make the expansigeny. These morphological changes seem to enhance flooding tolerance by promoting tissue gas exchange, and sponge gourd might thereby adapt to flooding stress.  相似文献   

15.
Maize (Zea mays L.) is generally considered to be a plant with aerenchyma formation inducible by environmental conditions. In our study, young maize plants, cultivated in various ways in order to minimise the stressing effect of hypoxia, flooding, mechanical impedance or nutrient starvation, were examined for the presence of aerenchyma in their primary roots. The area of aerenchyma in the root cortex was correlated with the root length. Although 12 different maize accessions were used, no plants without aerenchyma were acquired until an ethylene synthesis inhibitor was employed. Using an ACC-synthase inhibitor, it was confirmed that the aerenchyma formation is ethylene-regulated and dependent on irradiance. The presence of TUNEL-positive nuclei and ultrastructural changes in cortical cells suggest a connection between ethylene-dependent aerenchyma formation and programmed cell death. Position of cells with TUNEL-positive nuclei in relation to aerenchyma-channels was described.  相似文献   

16.
In roots of gramineous plants, lysigenous aerenchyma is created by the death and lysis of cortical cells. Rice (Oryza sativa) constitutively forms aerenchyma under aerobic conditions, and its formation is further induced under oxygen‐deficient conditions. However, maize (Zea mays) develops aerenchyma only under oxygen‐deficient conditions. Ethylene is involved in lysigenous aerenchyma formation. Here, we investigated how ethylene‐dependent aerenchyma formation is differently regulated between rice and maize. For this purpose, in rice, we used the reduced culm number1 (rcn1) mutant, in which ethylene biosynthesis is suppressed. Ethylene is converted from 1‐aminocyclopropane‐1‐carboxylic acid (ACC) by the action of ACC oxidase (ACO). We found that OsACO5 was highly expressed in the wild type, but not in rcn1, under aerobic conditions, suggesting that OsACO5 contributes to aerenchyma formation in aerated rice roots. By contrast, the ACO genes in maize roots were weakly expressed under aerobic conditions, and thus ACC treatment did not effectively induce ethylene production or aerenchyma formation, unlike in rice. Aerenchyma formation in rice roots after the initiation of oxygen‐deficient conditions was faster and greater than that in maize. These results suggest that the difference in aerenchyma formation in rice and maize is due to their different mechanisms for regulating ethylene biosynthesis.  相似文献   

17.
《Flora》2005,200(4):354-360
Paspalum modestum and P. wrightii are perennial grasses growing in permanent and seasonally flooded areas, respectively. The former produces short rhizomes and floating culms, the latter forms long rhizomes and erect culms. Variations in percentage aerenchymatous space (PAS) in different organs as a response to flooding was analysed using a clone of each species. Eighteen plantlets of each clone were cultivated during 7 months under flooded vs. unflooded conditions. After this period, roots, rhizomes, culms, and leaf sheaths were collected and prepared. PAS was measured using an image analysis device, and data were analysed using ANOVA.Production of aerenchyma took place in both species within the cortical parenchyma of roots, rhizomes and culms, and the mesophyll of leaf sheaths, both in flooded and unflooded plants. Under flooding conditions PAS increased in both species, although the individual response of organs differed: whereas in P. modestum PAS increased primarily in substratum-fixed roots, in P. wrightii all organs produced additional aerenchyma uniformly. Contrasting responses are understood as adaptations to permanent and seasonal flooding, respectively.  相似文献   

18.
Soil flooding results in unusually low oxygen concentrations and high ethylene concentrations in the roots of plants. This gas composition had a strongly negative effect on root elongation of two Rumex species. The effect of low oxygen concentrations was less severe when roots contained aerenchymatous tissues, such as in R. palustris Sm. R. thyrsiflorus Fingerh., which has little root porosity, was much more affected. Ethylene had an even stronger effect on root elongation than hypoxia, since very small concentrations (0.1 cm3 m?3) reduced root extension in the two species, and higher concentrations inhibited elongation more severely than did anoxia in the culture medium. Thus, ethylene contributes strongly to the negative effects of flooding on root growth. An exception may be the highly aerenchymatous, adventitious roots of R. palustris. Aerenchyma in these roots provides a low-resistance diffusion pathway for both endogenously produced ethylene and shoot-derived oxygen. This paper shows that extension by roots of R. palustris in flooded soil depends almost completely on this shoot-derived oxygen, and that aerenchyma prevents accumulation of growth-inhibiting levels of ethylene in the root.  相似文献   

19.
We have studied the role of ethylene in accelerating the lytic formation of gas spaces (aerenchyma) in the cortex of adventitious roots of maize (Zea mays L.) growing in poorly aerated conditions. Such roots had previously been shown to contain increased concentrations of ethylene. Ten day-old maize plants bearing seminal roots and one whorl of emerging adventitious roots were grown in nutrient solution bubbled with air, ethylene in air (0.1 to 5.0 l l–1), or allowed to become oxygen-deficient in nonaerated (but not completely anaerobic) solution. Additions of 0.1 l l–1 ethylene or more promoted the formation of aerenchyma, with lysis of up to 47% of the cortical cells. The effects of non-aeration were similar to those of exogenous ethylene. When silver ions, an ethylene antagonist, were present at low, non-toxic concentrations (circa 0.6 M), aerenchyma formation was prevented in ethylene treated roots and in those exposed to oxygen deficiency. Silver ions also blocked the inhibiting effect of exogenous ethylene on root extension. By contrast, the suppression of aerenchyma formation by silver ions under oxygendeficient conditions was associated with a retardation of root extension, indicating the importance of aerenchyma for root growth in poorly aerated media. Rates of production of ethylene by excised roots were stimulated by a previous non-aeration treatment. The effectiveness of Ag+ in inhibiting equally the action on cortical cells of exogenous ethylene and of non-aeration, supports the view that gas space (aerenchyma) formation in adventitious roots adpted to oxygendeficient environments is mediated by increased concentrations of endogenous ethylene. The possibility that extra ethylene could arise from increased biosynthesis of a precursor in root tissues with a restricted oxygen supply is discussed.  相似文献   

20.
? To adapt to waterlogging in soil, some gramineous plants, such as maize (Zea mays), form lysigenous aerenchyma in the root cortex. Ethylene, which is accumulated during waterlogging, promotes aerenchyma formation. However, the molecular mechanism of aerenchyma formation is not understood. ? The aim of this study was to identify aerenchyma formation-associated genes expressed in maize roots as a basis for understanding the molecular mechanism of aerenchyma formation. Maize plants were grown under waterlogged conditions, with or without pretreatment with an ethylene perception inhibitor 1-methylcyclopropene (1-MCP), or under aerobic conditions. Cortical cells were isolated by laser microdissection and their mRNA levels were examined with a microarray. ? The microarray analysis revealed 575 genes in the cortical cells, whose expression was either up-regulated or down-regulated under waterlogged conditions and whose induction or repression was suppressed by pretreatment with 1-MCP. ? The differentially expressed genes included genes related to the generation or scavenging of reactive oxygen species, Ca(2+) signaling, and cell wall loosening and degradation. The results of this study should lead to a better understanding of the mechanism of root lysigenous aerenchyma formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号