首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The muscle isozyme of glycogen phosphorylase is potently activated by the allosteric ligand AMP, whereas the liver isozyme is not. In this study we have investigated the metabolic impact of expression of muscle phosphorylase in liver cells. To this end, we constructed a replication-defective, recombinant adenovirus containing the muscle glycogen phosphorylase cDNA (termed AdCMV-MGP) and used this system to infect hepatocytes in culture. AMP-activatable glycogen phosphorylase activity was increased 46-fold 6 days after infection of primary liver cells with AdCMV-MGP. Despite large increases in phosphorylase activity, glycogen levels were only slightly reduced in AdCMV-MGP-infected liver cells compared to uninfected cells or cells infected with wild-type adenovirus. The lack of correlation of phosphorylase activity and glycogen content suggests that the liver cell environment can inhibit the muscle phosphorylase isozyme. This inhibition can be overcome, however, by addition of carbonyl cyanide m-chlorophenylhydrazone (CCCP), which increases AMP levels by 30-fold and causes a much larger decrease in glycogen levels in AdCMV-MGP-infected cells than in uninfected or wild-type adenovirus-infected controls. CCCP treatment also caused a preferential decrease in glycogen content relative to glucagon treatment in AdCMV-MGP-infected hepatocytes (74% versus 11%, respectively), even though the two drugs caused equal increases in phosphorylase a activity. Introduction of muscle phosphorylase into hepatocytes therefore confers a capacity for glycogenolytic response to effectors that is not provided by the endogenous liver phosphorylase isozyme. The remarkable efficiency of adenovirus-mediated gene transfer into primary hepatocytes and the demonstration of altered regulation of glycogen metabolism as a consequence of expression of a non-cognate phosphorylase isozyme may have implications for gene therapy of glycogen storage diseases.  相似文献   

2.
Muscle and liver glycogen phosphorylase isozymes differ in their responsiveness to the activating ligand AMP. The muscle enzyme, which supplies glucose in response to strenuous activity, binds AMP cooperatively, and its enzymatic activity becomes greatly enhanced. The liver isozyme regulates the level of blood glucose, and AMP is not the primary activator. In muscle glycogen phosphorylase, the residue proline 48 links two secondary structural elements that bind AMP. This amino acid residue is replaced with a threonine in the liver isozyme; unlike the muscle enzyme, liver binds AMP noncooperatively, and the enzymatic activity is not greatly increased. We have substituted proline 48 in the muscle enzyme with threonine, alanine, and glycine and characterized the recombinant enzymes kinetically and structurally to determine if proline at this position is critical for cooperative AMP binding and activation. Importantly, all of the engineered enzymes were fully activated by phosphorylation, indicating that enzymatic activity was not compromised. Only the mutant enzyme with alanine at position 48 responds like the wild-type enzyme to the presence of AMP, indicating that proline is not absolutely required for full cooperative activation. The substitution of either threonine or glycine at this position, however, creates enzymes that no longer bind AMP cooperatively. The enzyme with threonine at position 48 further mimics the liver enzyme, in that the maximal enzymatic activity is also reduced. Significantly, the glycine substitution caused the enzyme to be fully activated by AMP, although binding was not cooperative. The hyperactivation of the glycine mutant by AMP suggests that the total free energy of activation has decreased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The Novikoff hepatoma glycogen phosphorylase b has been purified over 300-fold, free of glycogen synthetase, some of its properties have been studied, and its relationship to fetal forms of rat muscle and liver phosphorylase has been established immunochemically. Its molecular weight is approximately 200,000, and, like the liver but unlike the muscle isozyme, it does not dimerize on conversion to the a form. However, it differs from the liver isozyme in being activated by AMP (Ka = 0.2 mM) and in not being activated by sulfate ion. Antibody to the adult rat muscle phosphorylase did not inhibit the activity of the tumor or liver isozyme. Although antibody to liver or hepatoma phosphorylase had no effect on adult muscle phosphorylase, each of these antibodies partially inhibited the other enzyme. These findings indicate the presence of some liver isozyme in the tumor, and this was confirmed by isoelectric focusing. Rat liver and muscle phosphorylase (and synthetase) were low during embryonal development but rose rapidly at or shortly after birth. Immunochemical studies revealed that both fetal liver and fetal muscle phosphorylases are immunologically identifiable with the tumor enzyme; and the fetal form is also present as a major form in rat kidney and brain.  相似文献   

4.
Liver and muscle glycogen phosphorylases, which are products of distinct genes, are both activated by covalent phosphorylation, but in the unphosphorylated (b) state, only the muscle isozyme is efficiently activated by the allosteric activator AMP. The different responsiveness of the phosphorylase isozymes to allosteric ligands is important for the maintenance of tissue and whole body glucose homeostasis. In an attempt to understand the structural determinants of differential sensitivity of the muscle and liver isozymes to AMP, we have developed a bacterial expression system for the liver enzyme, allowing native and engineered proteins to be expressed and characterized. Engineering of the single amino acid substitutions Thr48Pro, Met197Thr and the double mutant Thr48Pro, Met197Thr in liver phosphorylase, and Pro48Thr in muscle phosphorylase, did not qualitatively change the response of the two isozymes to AMP. These sites had previously been implicated in the configuration of the AMP binding site. However, when nine amino acids among the first 48 in liver phosphorylase were replaced with the corresponding muscle phosphorylase residues (L1M2-48L49-846), the engineered liver enzyme was activated by AMP to a higher maximal activity than native liver phosphorylase. Interestingly, the homotropic cooperativity of AMP binding was unchanged in the engineered phosphorylase b protein, and heterotropic cooperativity between the glucose-1-phosphate and AMP sites was only slightly enhanced. The native liver, native muscle and L1M2-48L49-846 phosphorylases were converted to the a form by treatment with purified phosphorylase kinase; the maximal activity of the chimeric a enzyme was greater than the native liver a enzyme and approached that of muscle phosphorylase a. From these results we suggest that tissue-specific phosphorylase isozymes have evolved a complex mechanism in which the N-terminal 48 amino acids modulate intrinsic activity (Vmax), probably by affecting subunit interactions, and other, as yet undefined regions specify the allosteric interactions with ligands and substrates.  相似文献   

5.
Acyl ureas were discovered as a novel class of inhibitors for glycogen phosphorylase, a molecular target to control hyperglycemia in type 2 diabetics. This series is exemplified by 6-{2,6-Dichloro- 4-[3-(2-chloro-benzoyl)-ureido]-phenoxy}-hexanoic acid, which inhibits human liver glycogen phosphorylase a with an IC(50) of 2.0 microM. Here we analyze four crystal structures of acyl urea derivatives in complex with rabbit muscle glycogen phosphorylase b to elucidate the mechanism of inhibition of these inhibitors. The structures were determined and refined to 2.26 Angstroms resolution and demonstrate that the inhibitors bind at the allosteric activator site, where the physiological activator AMP binds. Acyl ureas induce conformational changes in the vicinity of the allosteric site. Our findings suggest that acyl ureas inhibit glycogen phosphorylase by direct inhibition of AMP binding and by indirect inhibition of substrate binding through stabilization of the T' state.  相似文献   

6.
FR258900 has been discovered as a novel inhibitor of human liver glycogen phosphorylase a and proved to suppress hepatic glycogen breakdown and reduce plasma glucose concentrations in diabetic mice models. To elucidate the mechanism of inhibition, we have determined the crystal structure of the cocrystallized rabbit muscle glycogen phosphorylase b-FR258900 complex and refined it to 2.2 A resolution. The structure demonstrates that the inhibitor binds at the allosteric activator site, where the physiological activator AMP binds. The contacts from FR258900 to glycogen phosphorylase are dominated by nonpolar van der Waals interactions with Gln71, Gln72, Phe196, and Val45' (from the symmetry-related subunit), and also by ionic interactions from the carboxylate groups to the three arginine residues (Arg242, Arg309, and Arg310) that form the allosteric phosphate-recognition subsite. The binding of FR258900 to the protein promotes conformational changes that stabilize an inactive T-state quaternary conformation of the enzyme. The ligand-binding mode is different from those of the potent phenoxy-phthalate and acyl urea inhibitors, previously described, illustrating the broad specificity of the allosteric site.  相似文献   

7.
A new class of diacid analogues that binds at the AMP site not only are very potent but have approximately 10-fold selectivity in liver versus muscle glycogen phosphorylase (GP) in the in vitro assay. The synthesis, structure, and in vitro and in vivo biological evaluation of these liver selective glycogen phosphorylase inhibitors are discussed.  相似文献   

8.
Two distinct phosphorylase isozymes, skeletal muscle phosphorylase b and liver phosphorylase b, have been purified from skate (Raja pulchra) in a homogeneous form as judged by electrophoretic and immunological criteria. Both isozymes were dependent on AMP for activity and converted to a forms by rabbit muscle phosphorylase kinase. Their subunit molecular weight determined by sodium dodecyl sulfate-gel electrophoresis was 94,000. These isozymes were distinctly different in affinities for glycogen and AMP, while they were very similar in sensitivities to SO42?. Rabbit antibodies against each of the muscle and liver isozymes inhibited completely the respective specific antigens. No cross-reaction was observed in double diffusion tests, but some immunological relatedness of these isozymes was demonstrated by inhibition tests with antibodies. Their similarity was also shown by amino acid analyses. No evidence has been obtained that the skate possesses such an isozyme as mammalian phosphorylase L, the b form of which is inactive even in the presence of AMP. Electrophoretic studies on phosphorylases of crucian carp, toad, and snake revealed that these animals possess three isozymes which strikingly resemble mammalian isozymes in the organ-specific distribution and electrophoretic behavior.  相似文献   

9.
10.
Crude extracts of rabbit liver, preincubated to promote the dephosphorylation of enzymes or other regulatory proteins, were used to study the role of cyclic AMP in the activation of glycogen phosphorylase. Inasmuch as endogenous liver phosphorylase was irreversibly altered by the preincubation procedure, crystalline skeletal muscle phosphorylase was used as the substrate in these studies. In the presence of magnesium ions and ATP, phosphorylase b was converted to phosphorylase a, and in an apparent biphasic process the phosphorylase a formed was subsequently converted to phosphorylase b. In the presence of adenosine 3':5'-monophosphate the rate of phosphorylase a formation and the maximal amount of phosphorylase a formed were increased. The cyclic AMP effect was enhanced by glucose-6-P and required the presence of glycogen. The catalytic subunit of cyclic AMP-dependent protein kinase could replace cyclic AMP in the stimulation of phosphorylase a formation. The effects of cyclic AMP or the catalytic subunit were shown to be due to stimulation of phosphorylase kinase rather than to inhibition of phosphorylase phosphatase. Preliminary fractionation experiments showed that it is possible to separate phosphorylase kinase catalytic activity from a factor or factors required for stimulation of its activation by the catalytic subunit.  相似文献   

11.
1.The two forms of glycogen phosphorylase were purified from human liver, and some kinetic properties were examined in the direction of glycogen synthesis. The b form has a limited catalytic capacity, resembling that of the rabbit liver enzyme. It is characterized by a low affinity for glucose 1-phosphate, which is unaffected by AMP, and a low V, which becomes equal to that of the a form in the presence of the nucleotide. Lyotropic anions stimulate phosphorylase b and inhibit phosphorylase a by modifying the affinity for glucose 1-phosphate. Both enzyme forms are easily saturated with glycogen. 2. These kinetic properties have allowed us to design a simple assay method for total (a + b) phosphorylase in human liver. It requires only 0.5 mg of tissue, and its average efficiency is 90% when the enzyme is predominantly in the b form. 3. The assay of total phosphorylase allows the unequivocal diagnosis of hepatic glycogen-storage disease caused by phosphorylase deficiency. One patient with a complete deficiency is reported. 4. The assay of human liver phosphorylase a is based on the preferential inhibition of the b form by caffeine. The a form displays the same activity when measured by either of the two assays.  相似文献   

12.
The activity of glycogen phosphorylase is controlled by two nucleotide sites. We have found that organic solvents affect the regulatory properties of phosphorylase by altering the binding at these two sites. At the activator site, the Ka for AMP is lowered 10-fold in the presence of 10% 1,2-dimethoxyethane while, at the inhibitor site, the Ki for caffeine is increased 6-fold. The stimulation of activity by organic solvents is highly dependent on the enzyme's activity state. Phosphorylase b, which has a requirement for a nucleotide activator, loses this requirement in the presence of organic solvents, while the active form of the enzyme, phosphorylase a, is only slightly stimulated by organic solvents. The activation profile obtained with rabbit liver phosphorylase suggests that differences in the properties of this enzyme from rabbit muscle phosphorylase might be explained by a change in the relative affinity for AMP at the two nucleotide sites. The results also suggest that 1,2-dimethoxyethane may be useful to determine accurately the activities of different forms of liver phosphorylase.  相似文献   

13.
Flavopiridol has been shown to induce cell cycle arrest and apoptosis in various tumor cells in vitro and in vivo. Using immobilized flavopiridol, we identified glycogen phosphorylases (GP) from liver and brain as flavopiridol binding proteins from HeLa cell extract. Purified rabbit muscle GP also bound to the flavopiridol affinity column. GP is the rate-limiting enzyme in intracellular glycogen breakdown. Flavopiridol significantly inhibited the AMP-activated GP-b form of the purified rabbit muscle isoenzyme (IC50 of 1 microM at 0.8 mM AMP), but was less inhibitory to the active phosphorylated form of GP, GP-a (IC50 of 2.5 microM). The AMP-bound GP-a form was poorly inhibited by flavopiridol (40% at 10 microM). Increasing concentrations of the allosteric effector AMP resulted in a linear decrease in the GP-inhibitory activity of flavopiridol suggesting interference between flavopiridol and AMP. In contrast the GP inhibitor caffeine had no effect on the relative GP inhibition by flavopiridol, suggesting an additive effect of caffeine. Flavopiridol also inhibited the phosphorylase kinase-catalyzed phosphorylation of GP-b by inhibiting the kinase in vitro. Flavopiridol thus is able to interfere with both activating modifications of GP-b, AMP activation and phosphorylation. In A549 NSCLC cells flavopiridol treatment caused glycogen accumulation despite of an increase in GP activity, suggesting direct GP inhibition in vivo rather than inhibition of GP activation by phosphorylase kinase. These results suggest that the cyclin-dependent kinase inhibitor flavopiridol interferes with glycogen degradation, which may be responsible for flavopiridol's cytotoxicity and explain its resistance in some cell lines.  相似文献   

14.
Changes in cyclic AMP, protein kinase, phosphorylase kinase, and phosphorylase levels were examined during development in the rat. In liver, cyclic AMP increased prenatally and for the first 10 postnatal days; protein kinase levels (both cyclic AMP-dependent and independent activities) were high prenatally and declined during the first 10 postnatal days. Both phosphorylase and phosphorylase kinase in liver increased rapidly prenatally and more slowly postnatally. In heart and skeletal muscle cyclic AMP increased prenatally and for the first 10 days after birth, then declined. Protein kinase in both these tissues was highest prenatally and declined perinatally. In heart and skeletal muscle phosphorylase and phosphorylase kinase activities were extremely low prenatally although both enzymes were largely in their activated forms. Postnatally the nonactive form of both enzymes increased greatly throughout 30 postnatal days. In all three tissues, particularly heart and skeletal muscle, these changes could not be correlated with levels of tissue glycogen.  相似文献   

15.
Liver glycogen phosphorylase associated with the glycogen pellet was activated by a MgATP-dependent process. This activation was reduced by 90% by ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid, not affected by the inhibitor of the cAMP-dependent protein kinase, and increased 2.5-fold by the catalytic subunit of cAMP-dependent protein kinase. Low levels of free Ca2+ (8 x 10(-8) M) completely prevented the effects of the chelator. The activation of phosphorylase by MgATP was shown not to be due to formation of AMP. DEAE-cellulose chromatography of the glycogen pellet separated phosphorylase from phosphorylase kinase. The isolated phosphorylase was no longer activated by MgATP in the presence or absence of the catalytic subunit of cAMP-dependent protein kinase. The isolated phosphorylase kinase phosphorylated and activated skeletal muscle phosphorylase b and the activation was increased 2- to 3-fold by the catalytic subunit of cAMP-dependent protein kinase. Mixing the isolated phosphorylase and phosphorylase kinase together restored the effects of MgATP and the catalytic subunit of cAMP-dependent protein kinase on phosphorylase activity. These findings demonstrate that the phosphorylase kinase associated with liver glycogen has regulatory features similar to those of muscle phosphorylase kinase.  相似文献   

16.
1. Calcium-dependent transient phosphorylation of phorphorylase b has been monitored in a rabbit muscle glycogen particle fraction. Using a phosphorus nuclear magnetic resonance assay, the changes in concentrations of small phosphate-containing metabolites associated with this event have been measured. In addition, the conformation of phosphorylase has been monitored during transient activation by observing changes in the electron spin resonance signal from added spin-labelled phosphorylase. 2. The transient activation was associated with a loss of glucose-6-phosphate from phosphorylase b; newly formed phosphorylase a binds the nucleotides ADP, AMP, or IMP. Because of the fast interconversion of these nucleotides the species bound to phosphorylase a change throughout the process. 3. Lowering the [Mg2+] : [Ca2+] ratio during transient activation causes accumulation of ADP. Electron spin resonance data from spin-labelled phosphorylase shows that, under these conditions, ADP binding to phosphorylase a is potentiated. 4. Calcium-dependent activation in the glycogen particle fraction is compared to the activation of phosphorylase in vivo.  相似文献   

17.
Glycogen phosphorylase activity in both liver and kidney medulla of rabbit was stimulated in the presence of caffeine by various aminoglycoside antibiotics in the following rank order: gentamicin greater than neomycin greater than amikacin = kanamycin greater than or equal tobramycin, while streptomycin did not affect the enzyme activity. In contrast, in the presence of AMP, the stimulatory action of antibiotics was not observed. Since in the gentamicin-treated rabbits stimulation of glycogen phosphorylase activity by about 30% in both liver and kidney medulla was accompanied by a decrease of liver glycogen content by about 60% it is likely that a decline in liver glycogen level following antibiotic treatment is due to an increased glycogen phosphorylase activity.  相似文献   

18.
Glycogen phosphorylases catalyze the breakdown of glycogen to glucose-1-phosphate, which enters glycolysis to fulfill the energetic requirements of the organism. Maintaining control of blood glucose levels is critical in minimizing the debilitating effects of diabetes, making liver glycogen phosphorylase a potential therapeutic target. To support inhibitor design, we determined the crystal structures of the active and inactive forms of human liver glycogen phosphorylase a. During activation, forty residues of the catalytic site undergo order/disorder transitions, changes in secondary structure, or packing to reorganize the catalytic site for substrate binding and catalysis. Knowing the inactive and active conformations of the liver enzyme and how each differs from its counterpart in muscle phosphorylase provides the basis for designing inhibitors that bind preferentially to the inactive conformation of the liver isozyme.  相似文献   

19.
The phosphorylated form of liver glycogen phosphorylase (alpha-1,4-glucan : orthophosphate alpha-glucosyl-transferase, EC 2.4.1.1) (phosphorylase a) is active and easily measured while the dephosphorylated form (phosphorylase b), in contrast to the muscle enzyme, has been reported to be essentially inactive even in the presence of AMP. We have purified both forms of phosphorylase from rat liver and studied the characteristics of each. Phosphorylase b activity can be measured with our assay conditions. The phosphorylase b we obtained was stimulated by high concentrations of sulfate, and was a substrate for muscle phosphorylase kinase whereas phosphorylase a was inhibited by sulfate, and was a substrate for liver phosphorylase phosphatase. Substrate binding to phosphorylase b was poor (KM glycogen = 2.5 mM, glucose-1-P = 250 mM) compared to phosphorylase a (KM glycogen = 1.8 mM, KM glucose-1-P = 0.7 mM). Liver phosphorylase b was active in the absence of AMP. However, AMP lowered the KM for glucose-1-P to 80 mM for purified phosphorylase b and to 60 mM for the enzyme in crude extract (Ka = 0.5 mM). Using appropriate substrate, buffer and AMP concentrations, assay conditions have been developed which allow determination of phosphorylase a and 90% of the phosphorylase b activity in liver extracts. Interconversion of the two forms can be demonstrated in vivo (under acute stimulation) and in vitro with little change in total activity. A decrease in total phosphorylase activity has been observed after prolonged starvation and in diabetes.  相似文献   

20.
The interaction of rabbit skeletal muscle glycogen phosphorylase b with methotrexate, folic and folinic acids has been studied. Microscopic dissociation constant for the glycogen phosphorylase b--methotrexate complex determined by analytical ultracentrifugation is 0.43 mM. A subunit of glycogen phosphorylase b is shown to have two sites for methotrexate binding. AMP and FMN diminish the affinity of glycogen phosphorylase b to methotrexate, whereas glycogen does not influence the methotrexate binding to the enzyme. Methotrexate, folic and folinic acids are found to be inhibitors of the muscle glycogen phosphorylase b. The inhibition is reversible and characterized by positive kinetic cooperativity (the Hill coefficient exceeds one unity). The value of the pterin concentration causing two-fold diminishing of the enzymatic reaction rate increased in the order: folic acid (0.65 mM), methotrexate (1.01 mM), folinic acid (3.7 mM). The antagonism between methotrexate, folic and folinic acids, on the one hand, and AMP and FMN, on the other, is revealed for their combined action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号