首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Band 3 (AE1), the most prominent polypeptide of the human erythrocyte membrane, becomes heavily tyrosine phosphorylated following treatment of intact cells with protein tyrosine phosphatase inhibitors such as diamide, pervanadate, vanadate, or N-ethylmaleimide (NEM). The mechanism underlying this tyrosine phosphorylation is thought to involve the sequential action of two protein tyrosine kinases, Syk (p72syk) and Lyn (p53/56lyn). While Lyn catalysed phosphorylation appears to be strictly dependent on prior phosphorylation of Tyr8 and 21 of band 3 by Syk, little is known about the mechanism of induction of Syk phosphorylation. Data presented here show that both the fraction of Syk that associates with the membrane and the extent of phosphorylation of band 3 differ in response to the above inhibitors. While diamide and NEM stimulate syk translocation to the membrane during their induction of band 3 tyrosine phosphorylation, pervanadate and vanadate induce no change in kinase distribution. Moreover, diamide and NEM-induced Syk recruitment to the membrane are phosphotyrosine independent and involve their preferential association with Triton X-100-insoluble membrane skeletons. Together these data reveal a complex process controlling the association and catalytic activity of protein tyrosine kinases syk and lyn with the human erythrocyte membrane.  相似文献   

2.
Upon exposure to hypotonic medium, skate red blood cells swell and then reduce their volume by releasing organic osmolytes and associated water. The regulatory volume decrease is inhibited by stilbenes and anion exchange inhibitors, suggesting involvement of the red blood cell anion exchanger skAE1. To determine the role of tyrosine phosphorylation, red blood cells were volume expanded with and without prior treatment with the tyrosine kinase inhibitor piceatannol. At the concentration used, 130 microM, piceatannol nearly completely inhibits p72(syk), a tyrosine kinase previously shown to phosphorylate skAE1 (M. W. Musch, E. H. Hubert, and L. Goldstein. J Biol Chem 274: 7923-7928, 1999). Hyposmotic-induced volume expansion stimulated association of p72(syk) with a light membrane fraction of skate red blood cells. Piceatannol did not inhibit this association but decreased hyposmotically stimulated increased skAE1 tyrosine phophorylation. Movement of skAE1 from an intracellular to a surface detergent-resistant membrane domain and tetramer formation were not inhibited by piceatannol treatment. Two effects of hyposmotic-induced volume expansion, decreased band 4.1 binding and increased ankyrin, were both inhibited by piceatannol. These results suggest that at least one event requiring p72(syk) activation is pivotal for hyposmotic-induced increased transport; however, steps that do not require tyrosine phosphorylation may also play a role.  相似文献   

3.
The aims of this study were to determine the pathway of swelling-activated trimethylamine oxide (TMAO) efflux and its regulation in spiny dogfish (Squalus acanthias) red blood cells and compare the characteristics of this efflux pathway with the volume-activated osmolyte (taurine) channel present in erythrocytes of fishes. The characteristics of the TMAO efflux pathway were similar to those of the taurine efflux pathway. The swelling-activated effluxes of both TMAO and taurine were significantly inhibited by known anion transport inhibitors (DIDS and niflumic acid) and by the general channel inhibitor quinine. Volume expansion by hypotonicity, ethylene glycol, and diethyl urea activated both TMAO and taurine effluxes similarly. Volume expansion by hypotonicity, ethylene glycol, and diethyl urea also stimulated the activity of tyrosine kinases p72syk and p56lyn, although the stimulations by the latter two treatments were less than by hypotonicity. The volume activations of both TMAO and taurine effluxes were inhibited by tyrosine kinase inhibitors, suggesting that activation of tyrosine kinases may play a role in activating the osmolyte effluxes. These results indicate that the volume-activated TMAO efflux occurs via the organic osmolyte (taurine) channel and may be regulated by the volume activation of tyrosine kinases.  相似文献   

4.
Regulatory volume decrease occurs in fish erythrocytes by the release of osmolytes via a channel involving the anion exchanger (AE), also known as band 3. This review focuses primarily on work done on red blood cells from the skate (Raja erinacea) to further understand the activation, regulation and identification of this osmolyte channel. A model is proposed in which the reduction in intracellular ionic strength that occurs with increased cell volume may change the interaction between AE dimers and other cytoplasmic proteins (band 4.1 and ankyrin), promoting the formation of a tetrameric osmolyte channel. Phosphorylation by two tyrosine kinases, p72syk and p56lyn, is linked to this oligomerization. The skate AE has been recently cloned, resulting in three different isoforms, one of which, skAE1, when expressed in Xenopus oocytes, demonstrates taurine transport.  相似文献   

5.
The cytoplasmic tyrosine kinase p72syk (Syk) plays an essential role in signaling via a variety of immune and nonimmune cell receptors. Syk is activated in response to the engagement of the appropriate cell surface receptors and can phosphorylate downstream targets and recruit additional SH2-domain-containing proteins. In order to study the characteristics of Syk in vitro, we have overexpressed untagged, full-length human Syk in a recombinant baculovirus expression system. The enzyme was purified to 95% purity using a novel two-step affinity chromatography process using reactive yellow and phosphotyrosine columns. Yields of 3-10 mg purified Syk were obtained from 1 liter of infected insect cells. Western blotting, internal protein sequencing, and the specific tyrosine phosphorylation of a Syk peptide substrate indicated authenticity of the purified protein. The enzymatic properties of Syk were in good agreement with published data for the human enzyme, as the apparent K(m) of Syk for ATP was 10 microM and the peptide substrate was 3 microM. The recombinant protein also showed similar biochemical characteristics to the native protein isolated from B-cells such as autophosphorylation. Proteolytic cleavage of purified recombinant Syk was used to generate the kinase domain by micro-calpain. We therefore describe an efficient expression system and purification methodology to produce biologically active human Syk.  相似文献   

6.
The p56lck and p59fyn protein tyrosine kinases are important signal transmission elements in the activation of mature T lymphocytes by ligands to the T-cell antigen receptor (TCR)/CD3 complex. The lack of either kinase results in deficient early signaling events, and pharmacological agents that block tyrosine phosphorylation prevent T-cell activation altogether. After triggering of the TCR/CD3 complex, both kinases are moderately activated and begin to phosphorylate cellular substrates, but the molecular mechanisms responsible for these changes have remained unclear. We recently found that the p72syk protein tyrosine kinase is physically associated with the TCR/CD3 complex and is rapidly tyrosine phosphorylated and activated by receptor triggering also in T cells lacking p56lck. Here we examine the regulation of p72syk and its interaction with p56lck in transfected COS-1 cells. p72syk was catalytically active and heavily phosphorylated on its putative autophosphorylation site, Tyr-518/519. Mutation of these residues to phenylalanines abolished its activity in vitro and toward cellular substrates in vivo and reduced its tyrosine phosphorylation in intact cells by approximately 90%. Coexpression of lck did not alter the catalytic activity of p72syk, but the expressed p56lck was much more active in the presence of p72syk than when expressed alone. This activation was also seen as increased phosphorylation of cellular proteins. Concomitantly, p56lck was phosphorylated at Tyr-192 in its SH2 domain, and a Phe-192 mutant p56lck was no longer phosphorylated by p72syk. Phosphate was also detected in p56lck at Tyr-192 in lymphoid cells. These findings suggest that p56lck is positively regulated by the p72syk kinase.  相似文献   

7.
A phosphoinositide kinase that can phosphorylate phosphatidylinositol (PtdIns) is present in 4G10 monoclonal antibody (mAb) phosphotyrosine immunoprecipitates isolated from T cells activated via the T cell antigen receptor (TCR).CD3 complex. This PtdIns kinase is not the PtdIns 3-kinase that associates with activated protein tyrosine kinases in fibroblasts, since Western blotting and immunoprecipitation experiments with antibodies specific for the p85 alpha subunit of the PtdIns 3-kinase indicate that this polypeptide is not immunoprecipitated by the 4G10 mAb from TCR.CD3-activated Jurkat cells. Moreover, immunoprecipitated PtdIns 3-kinase isolated from T cells with p85 antibodies is inhibited when PtdIns is presented in Nonidet P-40, whereas the PtdIns kinase activity present in 4G10 mAb phosphotyrosine immunoprecipitates is enhanced in the presence of Nonidet P-40. In vitro kinase assays of PtdIns 3-kinase immunoprecipitated with p85 antibodies from T cells indicate that it associates with a serine kinase that can phosphorylate a p85 polypeptide. However, no protein tyrosine kinase activity capable of tyrosine phosphorylating p85 in vitro associates with p85 alpha immunoprecipitates in quiescent or TCR.CD3-activated T cells. These data suggest that the TCR.CD3 complex does not regulate PtdIns 3-kinase activity by a mechanism that involves protein tyrosine kinases.  相似文献   

8.
Previous studies demonstrated that the in vitro tyrosine phosphorylation of the human erythrocyte anion transporter, band 3, prevented the binding of various glycolytic enzymes to the N terminus of the cytoplasmic tail. Since these enzymes are inhibited in their bound state, the functional consequences of band 3 tyrosine phosphorylation in the red cell should be to activate the enzymes and elevate glycolysis. We searched for various enhancers of band 3 tyrosine phosphorylation using a novel assay designed to measure the phosphotyrosine levels at the band 3 tyrosine phosphorylation/glycolytic enzyme-binding site. This assay measures the extent of phosphorylation of a synthetic band 3 peptide entrapped within resealed red cells. Using this assay, three distinct compounds, all mild oxidants, were found to stimulate the tyrosine phosphorylation of band 3. All three compounds were also found to elevate glycolytic rates in intact erythrocytes. Moreover, the antitumor drug adriamycin was found to coordinately prevent these agents from stimulating both band 3 tyrosine phosphorylation and erythrocyte glycolysis. These results suggest a possible function for a protein tyrosine kinase in human erythrocytes, to regulate glycolysis through the tyrosine phosphorylation of band 3.  相似文献   

9.
After engagement of the B cell receptor for antigen, the Syk protein-tyrosine kinase becomes phosphorylated on multiple tyrosines, some of which serve as docking sites for downstream effectors with SH2 or other phosphotyrosine binding domains. The most frequently identified binding partner for catalytically active Syk identified in a yeast two-hybrid screen was the p85 regulatory subunit of phosphoinositide 3-kinase. The C-terminal SH2 domain of p85 was sufficient for mediating an interaction with tyrosine-phosphorylated Syk. Interestingly, this domain interacted with Syk at phosphotyrosine 317, a site phosphorylated in trans by the Src family kinase, Lyn, and identified previously as a binding site for c-Cbl. This site interacted preferentially with the p85 C-terminal SH2 domain compared with the c-Cbl tyrosine kinase binding domain. Molecular modeling studies showed a good fit between the p85 SH2 domain and a peptide containing phosphotyrosine 317. Tyr-317 was found to be essential for Syk to support phagocytosis mediated by FcgammaRIIA receptors expressed in a heterologous system. These studies establish a new type of p85 binding site that can exist on proteins that serve as substrates for Src family kinases and provide a molecular explanation for observations on direct interactions between Syk and phosphoinositide 3-kinase.  相似文献   

10.
Spleen tyrosine kinase (Syk) is a non-receptor protein kinase present in abundance in a wide range of hematopoietic cells. Syk reportedly plays a crucial role in immune signaling in B cells and cells bearing Fcγ-activation receptors. The role of syk in osteoblastic differentiation has not been well elucidated. We report herein the role of syk in osteoblastic differentiation. We investigated the effects of two syk inhibitors on osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. Expression of syk was detected in these two cell lines. Two syk inhibitors stimulated mRNA expression of osteoblastic markers (ALP, Runx2, Osterix). Mineralization of extracellular matrix was also promoted by treatment with syk inhibitors. Knockdown of Syk caused increased mRNA expression of osteoblastic markers. In addition, syk inhibitor and knockdown of Syk suppressed phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase Cα (PKCα). Our results indicate that syk might regulate osteoblastic differentiation through MAPK and PKCα.  相似文献   

11.
In B cells, two classes of protein tyrosine kinases (PTKs), the Src family of PTKs (Lyn, Fyn, Lck, and Blk) and non-Src family of PTKs (Syk), are known to be involved in signal transduction induced by the stimulation of the B-cell antigen receptor (BCR). Previous studies using Lyn-negative chicken B-cell clones revealed that Lyn is necessary for transduction of signals through the BCR. The kinase activity of the Src family of PTKs is negatively regulated by phosphorylation at the C-terminal tyrosine residue, and the PTK Csk has been demonstrated to phosphorylate this C-terminal residue of the Src family of PTKs. To investigate the role of Csk in BCR signaling, Csk-negative chicken B-cell clones were generated. In these Csk-negative cells, Lyn became constitutively active and highly phosphorylated at the autophosphorylation site, indicating that Csk is necessary to sustain Lyn in an inactive state. Since the C-terminal tyrosine phosphorylation of Lyn is barely detectable in the unstimulated, wild-type B cells, our data suggest that the activities of Csk and a certain protein tyrosine phosphatase(s) are balanced to maintain Lyn at a hypophosphorylated and inactive state. Moreover, we show that the kinase activity of Syk was also constitutively activated in Csk-negative cells. The degree of activation of both the Lyn and Syk kinases in Csk-negative cells was comparable to that observed in wild-type cells after BCR stimulation. However, BCR stimulation was still necessary in Csk-negative cells to elicit tyrosine phosphorylation of cellular proteins, as well as calcium mobilization and inositol 1,4,5-trisphosphate generation. These results suggest that not only activation of the Lyn and Syk kinases but also additional signals induced by the cross-linking of the BCR are required for full transduction of BCR signaling.  相似文献   

12.
Recent data indicate that phagocytosis mediated by FcgammaRs is controlled by the Src and Syk families of protein tyrosine kinases. In this study, we demonstrate a sequential involvement of Lyn and Syk in the phagocytosis of IgG-coated particles. The particles isolated at the stage of their binding to FcgammaRs (4 degrees C) were accompanied by high amounts of Lyn, in addition to the signaling gamma-chain of FcgammaRs. Simultaneously, the particle binding induced rapid tyrosine phosphorylation of numerous proteins. During synchronized internalization of the particles induced by shifting the cell to 37 degrees C, Syk kinase and Src homology 2-containing tyrosine phosphatase-1 (SHP-1) were associated with the formed phagosomes. At this step, most of the proteins were dephosphorylated, although some underwent further tyrosine phosphorylation. Quantitative immunoelectron microscopy studies confirmed that Lyn accumulated under the plasma membrane beneath the bound particles. High amounts of the gamma-chain and tyrosine-phosphorylated proteins were also observed under the bound particles. When the particles were internalized, the gamma-chain was still detected in the region of the phagosomes, while amounts of Lyn were markedly reduced. In contrast, the vicinity of the phagosomes was heavily decorated with anti-Syk and anti-SHP-1 Abs. The local level of protein tyrosine phosphorylation was reduced. The data indicate that the accumulation of Lyn during the binding of IgG-coated particles to FcgammaRs correlated with strong tyrosine phosphorylation of numerous proteins, suggesting an initiating role for Lyn in protein phosphorylation at the onset of the phagocytosis. Syk kinase and SHP-1 phosphatase are mainly engaged at the stage of particle internalization.  相似文献   

13.
Antigen receptor ligation on lymphocytes activates protein tyrosine kinases and phospholipase C-gamma (PLC-gamma) isoforms. Glutathione S-transferase fusion proteins containing the C-terminal Src-homology 2 [SH2(C)] domain of PLC-gamma1 bound to tyrosyl phosphorylated Syk. Syk isolated from antigen receptor-activated B cells phosphorylated PLC-gamma1 on Tyr-771 and the key regulatory residue Tyr-783 in vitro, whereas Lyn from the same B cells phosphorylated PLC-gamma1 only on Tyr-771. The ability of Syk to phosphorylate PLC-gamma1 required antigen receptor ligation, while Lyn was constitutively active. An mCD8-Syk cDNA construct could be expressed as a tyrosyl-phosphorylated chimeric protein tyrosine kinase in COS cells, was recognized by PLC-gamma1 SH2(C) in vitro, and induced tyrosyl phosphorylation of endogenous PLC-gamma1 in vivo. Substitution of Tyr-525 and Tyr-526 at the autophosphorylation site of Syk in mCD8-Syk substantially reduced the kinase activity and the binding of this variant chimera to PLC-gamma1 SH2(C) in vitro; it also failed to induce tyrosyl phosphorylation of PLC-gamma1 in vivo. In contrast, substitution of Tyr-348 and Tyr-352 in the linker region of Syk in mCD8-Syk did not affect the kinase activity of this variant chimera but almost completely eliminated its binding to PLC-gamma1 SH(C) and completely eliminated its ability to induce tyrosyl phosphorylation of PLC-gamma1 in vivo. Thus, an optimal kinase activity of Syk and an interaction between the linker region of Syk with PLC-gamma1 are required for the tyrosyl phosphorylation of PLC-gamma1.  相似文献   

14.
When swollen, skate red blood cells increase permeability and allow efflux of a number of solutes, including taurine. Hypoosmosis-induced taurine permeability appears to involve the red cell anion exchanger. However, three isoforms have been cloned from these cells. Therefore, to determine the ability of the individual isoform skate anion exchanger 1 (skAE1) to mediate hypoosmosis-induced taurine permeability as well as associated regulatory events, skAE1 was expressed in Xenopus oocytes. This study focused on investigating the role of tyrosine kinases and lipid rafts in the regulation of the channel. The results showed that tyrosine kinase inhibitors and lipid raft-disrupting agents inhibited the volume-sensitive organic osmolyte channel while protein tyrosine phosphatase inhibitors activated the channel in oocytes expressing skAE1. To study the role of lipid rafts in the activation of the volume-sensitive organic osmolyte channel, the cellular localization of skAE1 was investigated. Also, the role of tyrosine kinases was investigated by examining the tyrosine phosphorylation state of skAE1. Hypoosmotic stress induced mobilization of skAE1 into light membranes and the cell surface as well as tyrosine phosphorylation of skAE1. These events are involved in the activation of the volume-sensitive organic osmolyte channel in Xenopus oocytes expressing skAE1.  相似文献   

15.
The negative regulatory role of the Src homology 2 domain-containing inositol 5-phosphatase (SHIP) has been invoked in a variety of receptor-mediated signaling pathways. In B lymphocytes, co-clustering of antigen receptor surface immunoglobulin with FcgammaRIIb promotes the negative effects of SHIP, but how SHIP activity is regulated is unknown. To explore this issue, we investigated the effect of SHIP phosphorylation, receptor tyrosine engagement by its Src homology 2 domain, and membrane recruitment of SHIP on its enzymatic activity. We examined two SHIP phosphorylation kinase candidates, Lyn and Syk, and observed that the Src protein-tyrosine kinase, Lyn is far superior to Syk in its ability to phosphorylate SHIP both in vitro and in vivo. However, we found a minimal effect of phosphorylation or receptor tyrosine engagement of SHIP on its enzymatic activity, whereas membrane localization of SHIP significantly reduced cellular phosphatidylinositol 3,4, 5-triphosphate levels. Based on our results, we propose that a membrane localization of SHIP is the crucial event in the induction of its phosphatase effects.  相似文献   

16.
When swollen, skate red blood cells increase permeability and allow efflux of a number of solutes, including taurine. Hypoosmosis-induced taurine permeability appears to involve the red cell anion exchanger. However, three isoforms have been cloned from these cells. Therefore, to determine the ability of the individual isoform skate anion exchanger 1 (skAE1) to mediate hypoosmosis-induced taurine permeability as well as associated regulatory events, skAE1 was expressed in Xenopus oocytes. This study focused on investigating the role of tyrosine kinases and lipid rafts in the regulation of the channel. The results showed that tyrosine kinase inhibitors and lipid raft-disrupting agents inhibited the volume-sensitive organic osmolyte channel while protein tyrosine phosphatase inhibitors activated the channel in oocytes expressing skAE1. To study the role of lipid rafts in the activation of the volume-sensitive organic osmolyte channel, the cellular localization of skAE1 was investigated. Also, the role of tyrosine kinases was investigated by examining the tyrosine phosphorylation state of skAE1. Hypoosmotic stress induced mobilization of skAE1 into light membranes and the cell surface as well as tyrosine phosphorylation of skAE1. These events are involved in the activation of the volume-sensitive organic osmolyte channel in Xenopus oocytes expressing skAE1.  相似文献   

17.
18.
DAPP-1 (dual-adaptor for phosphotyrosine and 3-phosphoinositides-1) is a broadly distributed pleckstrin homology (PH) and Src homology 2 domain containing protein that can bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and can be phosphorylated on tyrosine 139 and internalised in response to activation of type I phosphoinositide 3-kinases (PI3K). Tyrosine phosphorylation of DAPP-1 appears important for appropriate intracellular targeting and creates a potential binding site for Src homology 2 domain-containing proteins. In endothelial cells overexpressing wild-type platelet-derived growth factor beta (PDGFbeta) receptors, which express Bmx and Src as their major Btk (Bruton's tyrosine kinase) family and Src family tyrosine kinases, respectively, PDGF can stimulate PI3K-dependent tyrosine phosphorylation of DAPP-1. Transient overexpression of Src most effectively, compared with Bmx and Syk, augments basal and PDGF-stimulated tyrosine phosphorylation of DAPP-1, whereas overexpression of dominant-negative Src, but not dominant-negative Bmx, inhibits PDGF-stimulated phosphorylation of DAPP-1. Cells expressing mutant PDGFbeta (Y579F/Y581F) receptors (which fail to bind and activate Src-type kinases) fail to tyrosine phosphorylate DAPP-1 in response to PDGF. We show that in DT40 chicken B cell lines, antibody stimulation leads to PI3K-dependent tyrosine phosphorylation of DAPP-1 that is lost in Lyn- or Syk-deficient cell lines but not Btk-deficient cell lines. PI3K-dependent activation of PKB is only lost in Syk-deficient lines. Finally, in vitro we find lipid-modified Src to be the most effective DAPP-1 tyrosine kinase (versus Syk, Lyn, Btk, and Bmx); phosphorylation of DAPP-1 but not Src autophosphorylation is stimulated approximately 10-fold by PtdIns(3,4,5)P(3) (IC(50) = 150 nm) and phosphatidylinositol 3,4-bisphosphate but not by their nonbiological diastereoisomers and depends on PH domain mediated binding of DAPP-1 to PtdIns(3,4,5)P(3)-containing membranes. We conclude that Src family kinases are responsible for tyrosine phosphorylation of DAPP-1 in vivo and that PI3K regulation is at the level of PH domain-mediated translocation of DAPP-1 to PI3K products in the membrane.  相似文献   

19.
Extracellular mitogen signal transduction is initiated by ligand binding to specific receptors of target cells. This causes a cellular response that frequently triggers the activation of tyrosine kinases. Non-receptor kinases like Src and Lyn can directly phosphorylate the Cdk inhibitor protein p27Kip1. Tyrosine phosphorylation can cause impaired Cdk-inhibitory activity and decreased stability of p27. In addition to these non-receptor tyrosine kinases, the receptor-associated tyrosine kinase Janus kinase 2 (JAK2) was recently identified to phosphorylate p27. JAK2 becomes activated through binding of various cytokines and growth factors to their corresponding receptors and can directly bind and selectively phosphorylate tyrosine residue 88 (Y88) of the Cdk inhibitor p27. This impairs Cdk inhibition by p27 and promotes its ubiquitin-dependent proteasomal degradation. Via this mechanism, JAK2 can link cytokine and growth factor initiated signal transduction to p27 regulation, whereas oncogenes like JAK2V617F or BCR-Abl can use this mechanism to inactivate the Cdk inhibitor.  相似文献   

20.
Engagement of high-affinity immunoglobulin E receptors (FcεRI) activates two signaling pathways in mast cells. The Lyn pathway leads to recruitment of Syk and to calcium mobilization whereas the Fyn pathway leads to phosphatidylinositol 3-kinase recruitment. Mapping the connections between both pathways remains an important task to be completed. We previously reported that Phospholipid Scramblase 1 (PLSCR1) is phosphorylated on tyrosine after cross-linking FcεRI on RBL-2H3 rat mast cells, amplifies mast cell degranulation, and is associated with both Lyn and Syk tyrosine kinases. Here, analysis of the pathway leading to PLSCR1 tyrosine phosphorylation reveals that it depends on the FcRγ chain. FcεRI aggregation in Fyn-deficient mouse bone marrow-derived mast cells (BMMC) induced a more robust increase in FcεRI-dependent tyrosine phosphorylation of PLSCR1 compared to wild-type cells, whereas PLSCR1 phosphorylation was abolished in Lyn-deficient BMMC. Lyn association with PLSCR1 was not altered in Fyn-deficient BMMC. PLSCR1 phosphorylation was also dependent on the kinase Syk and significantly, but partially, dependent on detectable calcium mobilization. Thus, the Lyn/Syk/calcium axis promotes PLSCR1 phosphorylation in multiple ways. Conversely, the Fyn-dependent pathway negatively regulates it. This study reveals a complex regulation for PLSCR1 tyrosine phosphorylation in FcεRI-activated mast cells and that PLSCR1 sits at a crossroads between Lyn and Fyn pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号