首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ramos E  Ghosh D  Baxter E  Corces VG 《Genetics》2006,172(4):2337-2349
Chromatin insulators have been implicated in the regulation of higher-order chromatin structure and may function to compartmentalize the eukaryotic genome into independent domains of gene expression. To test this possibility, we used biochemical and computational approaches to identify gypsy-like genomic-binding sites for the Suppressor of Hairy-wing [Su(Hw)] protein, a component of the gypsy insulator. EMSA and FISH analyses suggest that these are genuine Su(Hw)-binding sites. In addition, functional tests indicate that genomic Su(Hw)-binding sites can inhibit enhancer-promoter interactions and thus function as bona fide insulators. The insulator strength is dependent on the genomic location of the transgene and the number of Su(Hw)-binding sites, with clusters of two to three sites showing a stronger effect than individual sites. These clusters of Su(Hw)-binding sites are located mostly in intergenic regions or in introns of large genes, an arrangement that fits well with their proposed role in the formation of chromatin domains. Taken together, these data suggest that genomic gypsy-like insulators may provide a means for the compartmentalization of the genome within the nucleus.  相似文献   

3.
4.
Chromosomes are the physical realization of genetic information and thus form the basis for its readout and propagation. Here we present a high-resolution chromosomal contact map derived from a modified genome-wide chromosome conformation capture approach applied to Drosophila embryonic nuclei. The data show that the entire genome is linearly partitioned into well-demarcated physical domains that overlap extensively with active and repressive epigenetic marks. Chromosomal contacts are hierarchically organized between domains. Global modeling of contact density and clustering of domains show that inactive domains are condensed and confined to their chromosomal territories, whereas active domains reach out of the territory to form remote intra- and interchromosomal contacts. Moreover, we systematically identify specific long-range intrachromosomal contacts between Polycomb-repressed domains. Together, these observations allow for quantitative prediction of the Drosophila chromosomal contact map, laying the foundation for detailed studies of chromosome structure and function in a genetically tractable system.  相似文献   

5.

Background

Chromatin compactness has been considered a major determinant of gene activity and has been associated with specific chromatin modifications in studies on a few individual genetic loci. At the same time, genome-wide patterns of open and closed chromatin have been understudied, and are at present largely predicted from chromatin modification and gene expression data. However the universal applicability of such predictions is not self-evident, and requires experimental verification.

Results

We developed and implemented a high-throughput analysis for general chromatin sensitivity to DNase I which provides a comprehensive epigenomic assessment in a single assay. Contiguous domains of open and closed chromatin were identified by computational analysis of the data, and correlated to other genome annotations including predicted chromatin “states”, individual chromatin modifications, nuclear lamina interactions, and gene expression. While showing that the widely trusted predictions of chromatin structure are correct in the majority of cases, we detected diverse “exceptions” from the conventional rules. We found a profound paucity of chromatin modifications in a major fraction of closed chromatin, and identified a number of loci where chromatin configuration is opposite to that expected from modification and gene expression patterns. Further, we observed that chromatin of large introns tends to be closed even when the genes are expressed, and that a significant proportion of active genes including their promoters are located in closed chromatin.

Conclusions

These findings reveal limitations of the existing predictive models, indicate novel mechanisms of epigenetic regulation, and provide important insights into genome organization and function.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-988) contains supplementary material, which is available to authorized users.  相似文献   

6.
《Cell》2023,186(18):3826-3844.e26
  1. Download : Download high-res image (316KB)
  2. Download : Download full-size image
  相似文献   

7.
8.
The structural changes taking place in the salivary chromosomes of Drosophila melanogaster after treatment with urea-sodium hydroxide solution were studied by light and electron microscopy. An essential effect of the treatment is the gradual disappearance of the chromosomal banding pattern due to uncoiling of the chromomeric fibrils. During this process a huge amount of very thin fibrillar network is detached from the salivary chromosomes, and the longitudinal interband fibrils become aggregated to form a distinct central axis. This gives apparent likeness to a lampbrush chromosome. Even though at the light microscope level certain regions of the axial core appear to have been lost, no signs of breaks in the linear coherence of the chromosome can be observed in the electron micrographs. Because uncoiling of the chromomeres does not interrupt the continuity of the linear fibres, these observations on induced transitions lend support to the idea that the chromomeric fibrils are to some extent independent and dissimilar as compared to the interchromomeric fibres.Dedicated to Professor Esko Suomalainen in honour of his 60th birthday on June 11, 1970.  相似文献   

9.
Ion channels and synaptic organization: analysis of the Drosophila genome   总被引:10,自引:0,他引:10  
Littleton JT  Ganetzky B 《Neuron》2000,26(1):35-43
  相似文献   

10.
11.
Epigenetic organization represents an important regulation mechanism of gene expression. In this work, we show that the mouse p53 gene is organized into two epigenetic domains. The first domain is fully unmethylated, associated with histone modifications in active genes, and organized in a nucleosome-free conformation that is deficient in H2a/H2b, whereas the second domain is fully methylated, associated with deacetylated histones, and organized in a nucleosomal structure. In mitotic cells, RNA polymerase is depleted in domain II, which is folded into a higher-order structure and is associated with H1 histone, whereas domain I conformation is preserved. Similar results were obtained for cells treated with inhibitors of associated regulatory factors. These results suggest that depletion of RNA polymerase II is the result of a physical barrier due to the folding of chromatin in domain II. The novel chromatin structure in the first domain during mitosis also suggests a mechanism for marking active genes in successive cell cycles.  相似文献   

12.
13.
Earlier, the interphase chromatin structures could not be visualized due to the stickiness of the nuclear material. We have reduced stickiness by the reversal of permeabilization allowing the isolation and microscopic imaging of interphase chromatin structures. By using a high resolution of synchronization, collecting 36 elutriation fractions, we show that major intermediates of chromatin condensation include: (a) decondensed veillike chromatin at the unset of the S phase (2.0-2.2 C-value), (b) polarization of veiled chromatin (2.2-2.6 C), (c) fibrous chromatin (2.6-3.0 C), chromatin bodies (3.0-3.3 C), early precondensed chromosomes (3.3-3.6). The compaction of Drosophila chromosomes did not reach that of the mammalian cells in the final stage of condensation (3.6-4.0 C). Drosophila chromosomes consist of smaller units called rodlets. Results demonstrate that nucleosomal chromatin ("beads on string") does not form a solenoid structure; rather, the topological arrangement consists of meandering and plectonemic loops.  相似文献   

14.
15.
《Current biology : CB》2021,31(22):5102-5110.e5
  1. Download : Download high-res image (198KB)
  2. Download : Download full-size image
  相似文献   

16.
Histone modifications of nucleosomes distinguish euchromatic from heterochromatic chromatin states, distinguish gene regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to focus recombination events on regions of highest gene concentrations. Four additional epigenetic mechanisms that regulate commitment of cell lineages to their differentiated states are involved in the inheritance of differentiated states, e.g., DNA methylation, RNA interference, gene repositioning between interphase compartments, and gene replication time. The number of additional mechanisms used increases with the taxon's somatic complexity. The ability of siRNA transcribed from one locus to target, in trans, RNAi-associated nucleation of heterochromatin in distal, but complementary, loci seems central to orchestration of chromatin states along chromosomes. Most genes are inactive when heterochromatic. However, genes within beta-heterochromatin actually require the heterochromatic state for their activity, a property that uniquely positions such genes as sources of siRNA to target heterochromatinization of both the source locus and distal loci. Vertebrate chromosomes are organized into permanent structures that, during S-phase, regulate simultaneous firing of replicon clusters. The late replicating clusters, seen as G-bands during metaphase and as meiotic chromomeres during meiosis, epitomize an ontological utilization of all five self-reinforcing epigenetic mechanisms to regulate the reversible chromatin state called facultative (conditional) heterochromatin. Alternating euchromatin/heterochromatin domains separated by band boundaries, and interphase repositioning of G-band genes during ontological commitment can impose constraints on both meiotic interactions and mammalian karyotype evolution.  相似文献   

17.
Transfer RNAs of Escherichia coli were separated by two-dimensional polyacrylamide gel electrophoresis, and the relative abundance of each of the 26 known tRNAs thus separated was measured on the basis of molecular numbers in cells. Based on this relative abundance, the distributions of cognate codons in E. coli genes (lacI, rpA, asnA, recA, lpp and four ribosomal protein genes) and in coliphage (MS2, φX174 and λ) genes were examined. A strong positive correlation between the tRNA abundance and the choice of codons, among both synonymous codons and those corresponding to different amino acids, was found for all E. coli protein genes that had been sequenced completely. However, the correlation was less significant for the phage genes. The relationship between tRNA abundance and its usage (namely anticodon usage) was examined by regression analysis. The degree of the relationship found for individual E. coli genes differed from gene to gene: those of r-protein genes and recA were higher than those of trpA, lacI and asnA. The dependent relationship of tRNA usage on its content for the first two genes seems to be greater than that expected from the proportional relationship between the two variables; i.e. these genes selectively use codons corresponding to major tRNAs but nearly avoid using those of minor tRNAs.  相似文献   

18.
The endosperm is a seed tissue unique to flowering plants. Due to its central role in nourishing and protecting the embryo, endosperm development is subject to parental conflicts and adaptive processes, which led to the evolution of parent-of-origin-dependent gene regulation. The role of higher-order chromatin organization in regulating the endosperm genome was long ignored due to technical hindrance. We developed a combination of approaches to analyze nuclear structure and chromatin organization in Arabidopsis thaliana endosperm. Endosperm nuclei showed a less condensed chromatin than other types of nuclei and a peculiar heterochromatin organization, with smaller chromocenters and additional heterochromatic foci interspersed in euchromatin. This is accompanied by a redistribution of the heterochromatin mark H3K9me1 from chromocenters toward euchromatin and interspersed heterochromatin. Thus, endosperm nuclei have a specific nuclear architecture and organization, which we interpret as a relaxed chromocenter-loop model. The analysis of endosperm with altered parental genome dosage indicated that the additional heterochromatin may be predominantly of maternal origin, suggesting differential regulation of maternal and paternal genomes, possibly linked to genome dosage regulation.  相似文献   

19.
The hypothesis that the genome is composed of a patchwork of structural and functional domains (units) that may be either active or repressed was proposed almost 30 years ago. Here, we examine the evolution of the domain model of eukaryotic genome organization in view of the expansion of genome-scale techniques in the twenty-first century that have provided us with a wealth of information on genome organization, folding, and functioning.  相似文献   

20.
A series of mono- and dinucleosomal DNAs characterized by an about ten-base periodicity in the size were revealed in the micrococcal nuclease digests of Drosophila chromatin which have 180 +/- 5 base pair (bp) nucleosomal repeat. 20, 30, and 40 bp spacers were found to be predominant in chromatin by trimming DNA in dinucleosomes to the core position. Among several identified mononucleosomes (MN), MN170, MN180 and MN190 were isolated from different sources (the figures indicate the DNA length in bp). The presence of the 10, 20, and 30 bp long spacers was shown in these mononucleosomes by crosslinking experiments. The interaction of histone H3 with the spacer in the Drosophila MN180 particle was also shown by the crosslinking /5/. We conclude from these results that the 10 n bp long intercore DNA (n = 2, 3 and 4) is organized by histone H3, in particular, and together with the core DNA forms a continuous superhelix. Taken together, these data suggest that Drosophila chromatin consists of the regularly aligned and tightly packed MN180, as a repeating unit, containing 10 and 20 bp spacers at the ends of 180 bp DNA. Within the asymmetric and randomly oriented in chromatin MN180, the cores occupy two alternative positions spaced by 10 bp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号