首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
卵母细胞质量评定的方法探讨   总被引:2,自引:0,他引:2  
在辅助生殖领域及繁殖科学中常涉及对卵母细胞质量的评定,据卵母细胞发育过程中的结构变化和生化变化,卵母细胞的质量评定主要涵盖对卵母细胞形态和成熟度的考察。本文从非侵袭性技术和侵袭性技术分析的角度论述了卵母细胞质量评定的方法,为合理评价卵母细胞质量提供了多种有效途径。  相似文献   

2.
The objective of this study was to correlate the thickness of the zona pellucida (zona) with egg (oocyte) maturity determined through a widely-used method of assessing oocyte maturation namely, the evidence for cumulus and corona cells expansion. Measurements of the zona of cultured oocytes were recorded at 0, 3, 6, 24, and 48 hr after laparoscopic oocyte retrieval from hormonallystimulated squirrel monkeys. The results indicated that at the time of oocyte retrieval, oocytes that were classified as mature had thicker zonae compared with immature oocytes. The zona layer of the mature oocyte expanded to a maximum after 6 hr of incubation while the zona layer of the immature oocyte became compressed. The diameter of the mature oocyte (minus the zona and perivitelline space) became smaller with time while the immature oocyte diameter remained relatively unchanged. The correlation between the maturational state of the oocyte and the thickness of the zona layer suggest the possible application of zona morphometric evaluations as an indicator of oocyte maturation.  相似文献   

3.
In Drosophila, a single oocyte develops within a 16-cell germline cyst. Although all 16 cells initiate meiosis and undergo premeiotic S phase, only the oocyte retains its meiotic chromosome configuration and remains in the meiotic cycle. The other 15 cells in the cyst enter the endocycle and develop as polyploid nurse cells. A longstanding goal in the field has been to identify factors that are concentrated or activated in the oocyte, that promote meiotic progression and/or the establishment of the oocyte identity. We present the characterization of the missing oocyte gene, an excellent candidate for a gene directly involved in the differentiation of the oocyte nucleus. The missing oocyte gene encodes a highly conserved protein that preferentially accumulates in pro-oocyte nuclei in early prophase of meiosis I. In missing oocyte mutants, the oocyte enters the endocycle and develops as a polyploid nurse cell. Genetic interaction studies indicate that missing oocyte influences meiotic progression prior to pachytene and may interact with pathways that control DNA metabolism. Our data strongly suggest that the product of the missing oocyte gene acts in the oocyte nucleus to facilitate the execution of the unique cell cycle and developmental programs that produce the mature haploid gamete.  相似文献   

4.
2003年7月~2005年6月,从嘉陵江收集雌性华鲮性腺材料,通过组织学方法观察其卵子发育的特征。华鲮的卵子发生经过卵原细胞、核酸积累、皮层小泡形成、卵黄积累、成熟卵、退化卵几个时相。卵母细胞核酸时相初期,染色质明显向核膜内侧边缘聚集是卵母细胞早期发育的重要特点。  相似文献   

5.
卵丘在卵母细胞成熟中的作用   总被引:5,自引:0,他引:5  
卵丘是指在卵母细胞外周并与之进行代谢联系的颗粒细胞群;卵丘对于卵母细胞成熟有极其重要的作用。主要表现在卵丘参与维持卵母细胞减数分裂阻滞,诱导卵母细胞减数分裂恢复、支持卵母细胞细胞质的成熟。卵丘形态和卵丘扩展影响卵母细胞成熟。了解卵丘在卵母细胞成熟中的作用有助于帮助人们进一步揭示哺乳动物卵母细胞成熟的机制。  相似文献   

6.
We have investigated oocyte development in Hydra vulgaris, a member of one of the oldest metazoan phyla. We show that oocyte determination involves a mechanism that establishes a subset of precursor interstitial cells competent to differentiate into oocytes. The oocyte is singled out from this subset and the competence of the remaining cells to become oocytes dramatically decreases as they adopt the alternative nurse cell fate. Progression through the nurse cell differentiation program requires the presence of the oocyte. When the oocyte is removed from the egg field, nurse cells abort their differentiation program, undergo apoptosis, and are phagocytosed and degraded by somatic epithelial cells. However, in the presence of the oocyte, nurse cells differentiate and enter an unusual apoptosis program where they are phagocytosed by the oocyte, but are not degraded. We show that the oocyte is able to induce this unusual apoptosis program in immature nurse cells that have not completed differentiation. A new model for oocyte development in Hydra is discussed.  相似文献   

7.
8.
Oocytes and their companion somatic cells maintain a close association throughout oogenesis and this association is essential for normal oocyte and follicular development. This review summarizes current concepts of the role of the somatic cells in the regulation of mammalian oocyte growth, the maintenance of meiotic arrest, the induction of oocyte maturation, and the acquisition of full embryonic developmental competence during oocyte maturation in vitro. Gap junctions appear to mediate these regulatory processes. The regulatory interaction of oocytes and somatic cells, however, is not unidirectional; the oocyte participates in the proliferation, development, and function of the follicular somatic cells. The oocyte secretes factors that enable the cumulus cells to synthesize hyaluronic acid and undergo cumulus expansion in response to hormonal stimulation. In addition, the oocyte produces factors that promote the proliferation of granulosa cells. These interactions in vitro do not appear to require the mediation of gap junctions. The oocyte also promotes the differentiation of granulosa cells into functional cumulus cells, but this function of the oocyte appears to require the continued presence and close association of the oocyte and granulosa cells. Therefore, oocytes and follicular somatic cells are interdependent for development and function.  相似文献   

9.
Li Q  Miao DQ  Zhou P  Wu YG  Gao D  Wei DL  Cui W  Tan JH 《Biology of reproduction》2011,84(6):1111-1118
Inhibiting oocyte postovulatory aging is important both for healthy reproduction and for assisted reproduction techniques. Some studies suggest that glucose promotes oocyte meiotic resumption through glycolysis, but others indicate that it does so by means of the pentose phosphate pathway (PPP). Furthermore, although pyruvate was found to prevent oocyte aging, the mechanism is unclear. The present study addressed these issues by using the postovulatory aging oocyte model. The results showed that whereas the oocyte itself could utilize pyruvate or lactate to prevent aging, it could not use glucose unless in the presence of cumulus cells. Glucose metabolism in cumulus cells prevented oocyte aging by producing pyruvate and NADPH through glycolysis and PPP. Whereas PPP was still functioning after inhibition of glycolysis, the glycolysis was completely inactivated after inhibition of PPP. Addition of fructose-6-phosphate, an intermediate product from PPP, alleviated oocyte aging significantly when the PPP was totally inhibited. Lactate prevented oocyte aging through its lactate dehydrogenase-catalyzed oxidation to pyruvate, but pyruvate inhibited oocyte aging by its intramitochondrial metabolism. However, both lactate and pyruvate required mitochondrial electron transport to prevent oocyte aging. The inhibition of oocyte aging by both PPP and pyruvate involved regulation of the intracellular redox status. Together, the results suggest that glucose metabolism in cumulus cells prevented oocyte postovulatory aging by maintaining both energy supply and the intracellular redox potential and that) glycolysis in cumulus cells might be defective, with pyruvate production depending upon the PPP for intermediate products.  相似文献   

10.
The anterior-posterior axis of Drosophila is established before fertilisation when the oocyte becomes polarised to direct the localisation of bicoid and oskar mRNAs to opposite poles of the egg. Here we review recent results that reveal that the oocyte acquires polarity much earlier than previously thought, at the time when it acquires its fate. The oocyte arises from a 16-cell germline cyst, and its selection and the initial cue for its polarisation are controlled by the asymmetric segregation of a germline specific organelle called the fusome. Several different downstream pathways then interpret this asymmetry to restrict distinct aspects of oocyte identity to this cell. Mutations in any of the six conserved Par proteins disrupt the early polarisation of the oocyte and lead to a failure to maintain its identity. Surprisingly, mutations affecting the control of the mitotic or meiotic cell cycle also lead to a failure to maintain the oocyte fate, indicating crosstalk between the nuclear and cytoplasmic events of oocyte differentiation. The early polarity of the oocyte initiates a series of reciprocal signaling events between the oocyte and the somatic follicle cells that leads to a reversal of oocyte polarity later in oogenesis, which defines the anterior-posterior axis of the embryo.  相似文献   

11.
12.
13.
Progesterone-induced oocyte maturation is thought to involve the inhibition of an oocyte adenylyl cyclase and reduction of intracellular cAMP. Our previous studies demonstrated that injection of inhibitors of G protein betagamma complex induces hormone-independent oocyte maturation. In contrast, over-expression of Xenopus Gbeta1 (xGbeta1), alone or together with bovine Ggamma2, elevates oocyte cAMP and inhibits progesterone-induced oocyte maturation. To further investigate the mechanism of Gbetagamma-induced oocyte maturation, we generated a mutant xGbeta1, substituting Asp-228 for Gly (D228G). An equivalent mutation in the mammalian Gbeta1 results in the loss of its ability to activate adenylyl cyclases. Indeed, co-injection of xGbeta1D228G with Ggamma2 failed to increase oocyte cAMP or inhibit progesterone-induced oocyte maturation. To directly demonstrate that oocytes contained a Gbetagamma-regulated adenylyl cyclase, we analyzed cAMP formation in vitro by using oocyte membrane preparations. Purified brain Gbetagamma complexes significantly activated membrane-bound adenylyl cyclase activities. Multiple adenylyl cyclase isoforms were identified in frog oocytes by PCR using degenerate primers corresponding to highly conserved catalytic amino acid sequences. Among these we identified a partial Xenopus adenylyl cyclase 7 (xAC7) that was 65% identical in amino acid sequence to human AC7. A dominant-negative mutant of xAC7 induced hormone-independent oocyte maturation and accelerated progesterone-induced oocyte maturation. Theses findings suggest that xAC7 is a major component of the G2 arrest mechanism in Xenopus oocytes.  相似文献   

14.
It is well established that the decline in female reproductive outcomes is related to postovulatory aging of oocytes and advanced maternal age. Poor oocyte quality is correlated with compromised genetic integrity and epigenetic changes during the oocyte aging process. Here, we review the epigenetic alterations, mainly focused on DNA methylation, histone acetylation and methylation associated with postovulatory oocyte aging as well as advanced maternal age. Furthermore, we address the underlying epigenetic mechanisms that contribute to the decline in oocyte quality during oocyte aging.  相似文献   

15.
Maternal diabetes has been demonstrated to adversely affect preimplantation embryo development and pregnancy outcomes. Emerging evidence has implicated that these effects are associated with compromised oocyte competence. Several developmental defects during oocyte maturation in diabetic mice have been reported over past decades. Most recently, we further identified the structural, spatial and metabolic dysfunction of mitochondria in oocytes from diabetic mice, suggesting the impaired oocyte quality. These defects in the oocyte may be maternally transmitted to the embryo and then manifested later as developmental abnormalities in preimplantation embryo, congenital malformations, and even metabolic disease in the offspring. In this paper, we briefly review the effects of maternal diabetes on oocyte quality, with a particular emphasis on the mitochondrial dysfunction. The possible connection between dysfunctional oocyte mitochondria and reproductive failure of diabetic females, and the mechanism(s) by which maternal diabetes exerts its effects on the oocyte are also discussed.  相似文献   

16.
Vertebrate female reproduction is limited by the oocyte stockpiles acquired during embryonic development. These are gradually depleted over the organism's lifetime through the process of apoptosis. The timer that triggers this cell death is yet to be identified. We used the Xenopus egg/oocyte system to examine the hypothesis that nutrient stores can regulate oocyte viability. We show that pentose-phosphate-pathway generation of NADPH is critical for oocyte survival and that the target of this regulation is caspase-2, previously shown to be required for oocyte death in mice. Pentose-phosphate-pathway-mediated inhibition of cell death was due to the inhibitory phosphorylation of caspase-2 by calcium/calmodulin-dependent protein kinase II (CaMKII). These data suggest that exhaustion of oocyte nutrients, resulting in an inability to generate NADPH, may contribute to ooctye apoptosis. These data also provide unexpected links between oocyte metabolism, CaMKII, and caspase-2.  相似文献   

17.
The PAR-1 kinase is required for the posterior localisation of the germline determinants in C. elegans and Drosophila, and localises to the posterior of the zygote and the oocyte in each case. We show that Drosophila PAR-1 is also required much earlier in oogenesis for the selection of one cell in a germline cyst to become the oocyte. Although the initial steps in oocyte determination are delayed, three markers for oocyte identity, the synaptonemal complex, the centrosomes and Orb protein, still become restricted to one cell in mutant clones. However, the centrosomes and Orb protein fail to translocate from the anterior to the posterior cortex of the presumptive oocyte in region 3 of the germarium, and the cell exits meiosis and becomes a nurse cell. Furthermore, markers for the minus ends of the microtubules also fail to move from the anterior to the posterior of the oocyte in mutant clones. Thus, PAR-1 is required for the maintenance of oocyte identity, and plays a role in microtubule-dependent localisation within the oocyte at two stages of oogenesis. Finally, we show that PAR-1 localises on the fusome, and provides a link between the asymmetry of the fusome and the selection of the oocyte.  相似文献   

18.
《Reproductive biology》2022,22(3):100668
SET is a multifunctional protein involved in a variety of molecular processes such as cell apoptosis and cell-cycle regulation. In ovaries SET is predominantly expressed in theca cells and oocytes. In polycystic ovary syndrome (PCOS) patients the expression of SET was increased than healthy people. The current study was designed to determine whether SET plays a role in oocyte maturation and apoptosis, which may provide clues for the underlying pathological mechanism of follicular development in PCOS patients. Oocytes at germinal vesicle (GV) stage were collected from 6-week-old female ICR mice ovaries. The expression of SET was manipulated by AdCMV-SET and AdH1-SiRNA/SET adenoviruses. SET overexpression improved oocyte maturation whereas SET knockdown inhibited oocyte maturation. Moreover, SET negatively regulated serine/threonine protein phosphatase 2A (PP2A) activity in oocytes. Treatment with PP2A inhibitor okadaic acid (OA) promoted oocyte maturation. Furthermore, PP2A knockdown confirmed the role of PP2A in oocyte maturation, and OA was able to block the AdH1-SiRNA/SET-mediated inhibition on oocyte maturation. The central role of PP2A in SET-mediated regulation of oocyte maturation was confirmed by the finding that SET increased the expression of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) and PP2A inhibited their expressions. Besides, SET inhibited oocyte apoptosis through decreasing the expression of caspase 3 and caspases 8, while PP2A had no effect on oocyte apoptosis. SET promoted oocyte maturation by inhibiting PP2A activity and inhibited oocyte apoptosis in mouse in-vitro cultured oocytes, which may provide a pathologic pathway leading to impaired oocyte developmental competence in PCOS.  相似文献   

19.
A cytochemical analysis reveals the development of fatty yolk (FY) in the early antral oocyte and proteid yolk (PY) in the late antral oocyte of the guinea pig. While the FY develops from the lipid elements of the oocyte (endogenous), the PY apparently develops from the protein-positive precursor granules infiltrating into the oocyte (exogenous). Cytochemically the FY is composed of saturated triglycerides and the PY of tyrosine-, tryptophan-, histidine-, arginine-, and -SH and -NH2 groups-containing protein. It has been found possible to conclude that the FY is used up by the growing oocyte, while the PY continues to be present in the mature pre-ovulatory oocyte.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号