首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FliH is a soluble component of the flagellar export apparatus that binds to the ATPase FliI, and negatively regulates its activity. The 235-amino-acid FliH dimerizes and interacts with FliI to form a hetero-trimeric (FliH)2FliI complex. In the present work, the importance of different regions of FliH was examined. A set of 24 scanning deletions of 10 amino acids was constructed over the entire FliH sequence, along with several combined deletions of 40 amino acids and truncations of both N- and C-termini. The mutant proteins were examined with respect to (i) complementation; (ii) dominance and multicopy effects; (iii) interaction with wild-type FliH; (iv) interaction with FliI; (v) inhibition of the ATPase activity of FliI; and (vi) interaction with the putative general chaperone FliJ. Analysis of the deletion mutants revealed a clear functional demarcation between the FliH N- and C-terminal regions. The 10-amino-acid deletions throughout most of the N-terminal half of the sequence complemented and were not dominant, whereas those throughout most of the C-terminal half did not complement and were dominant. FliI binding was disrupted by C-terminal deletions from residue 101 onwards, indicating that the C-terminal domain of FliH is essential for interaction with FliI. FliH dimerization was abolished by deletion of residues 101-140 in the centre of the sequence, as were complementation, dominance and interaction with FliI and FliJ. The importance of this region was confirmed by the fact that fragment FliHC2 (residues 99-235) interacted with FliH and FliI, whereas fragment FliHC1 (residues 119-235) did not. FliHC2 formed a relatively unstable complex with FliI and showed biphasic regulation of ATPase activity, suggesting that the FliH N-terminus stabilizes the (FliH)2FliI complex. Several of the N-terminal deletions tested permitted close to normal ATPase activity of FliI. Deletion of the last five residues of FliH caused a fivefold activation of ATPase activity, suggesting that this region of FliH governs a switch between repression and activation of FliI. Deletion of the first 10 residues of FliH abolished complementation, severely reduced its interaction with FliJ and uncoupled its role as a FliI repressor from its other export functions. Based on these data, a model is presented for the domain construction and function of FliH in complex with FliI and FliJ.  相似文献   

2.
Bacterial flagellar protein export requires an ATPase, FliI, and presumptive inhibitor, FliH. We have explored the molecular basis for FliI/FliH interaction in the human gastric pathogen Helicobacter pylori. By using bioinformatic and biochemical analyses, we showed that residues 1-18 of FliI very likely form an amphipathic alpha-helix upon interaction with FliH, and that residues 21-91 of FliI resemble the N-terminal oligomerization domain of the F1-ATPase catalytic subunits. A truncated FliI-(2-91) protein was shown to be folded, although the N-terminal 18 residues were likely unstructured. Deletion and scanning mutagenesis showed that residues 1-18 of FliI were essential for the FliI/FliH interaction. Scanning mutation of amino acids in the N-terminal 10 residues of FliI indicated that a cluster of hydrophobic residues in this segment was critical for the interaction with FliH. The interaction between FliI and FliH has similarities to the interaction between the N-terminal alpha-helix of the F1-ATPase alpha-subunit and the globular domain of the F1-ATPase delta-subunit, respectively. This similarity suggests that FliH may function as a molecular stator.  相似文献   

3.
Salmonella FliI is the flagellar ATPase which converts the energy of ATP hydrolysis into the export of flagellar proteins. It forms a ring-shaped oligomer in the presence of ATP, its analogs, or phospholipids. The extreme N-terminal region of FliI has an unstable conformation and is responsible for the interaction with other components of the export apparatus and for regulation of the catalytic mechanism. To understand the role of this N-terminal region in more detail, we used multi-angle light-scattering, analytical ultracentrifugation, far-UV CD and biochemical methods to characterize a partially functional variant of FliI, missing its first seven amino acid residues (His-FliI(Delta1-7)), whose ATPase activity is about ten times lower than that of wild-type FliI. His-FliI(Delta1-7) is monomeric in solution. The deletion increased the content of alpha-helix, suggesting that the deletion stabilizes the unstable N-terminal region into an alpha-helical conformation. The deletion did not influence the K(m) value for ATP. However, unlike the wild-type, ATP and acidic phospholipids did not induce oligomerization of His-FliI(Delta1-7) or increase its ATPase activity. These results suggest that the deletion suppresses the oligomerization of FliI, and that a conformational change in the unstable N-terminal region is required for FliI oligomerization to effectively couple the energy of ATP hydrolysis to the translocation of flagellar proteins.  相似文献   

4.
The flagellar type III protein export apparatus plays an essential role in the formation of the bacterial flagellum. FliH forms a complex along with FliI ATPase and is postulated to provide a link between FliI ring formation and flagellar protein export. Two tryptophan residues of FliH, Trp7 and Trp10, are required for the effective docking of the FliH-FliI complex to the export gate made of six membrane proteins. However, it remains unknown which export gate component interacts with these two tryptophan residues. Here, we performed targeted photo-cross-linking of the extreme N-terminal region of FliH (FliH(EN)) with its binding partners. We replaced Trp7 and Trp10 of FliH with p-benzoyl-phenylalanine (pBPA), a photo-cross-linkable unnatural amino acid, to produce FliH(W7pBPA) and FliH(W10pBPA). They were both functional and were photo-cross-linked with one of the export gate proteins, FlhA, but not with the other gate proteins, indicating that these two tryptophan residues are in close proximity to FlhA. Mutant FlhA proteins that are functional in the presence of FliH and FliI but not in their absence showed a significantly reduced function also by N-terminal FliH mutations even in the presence of FliI. We suggest that the interaction of FliH(EN) with FlhA is required for anchoring the FliI hexamer ring to the export gate for efficient flagellar protein export.  相似文献   

5.
Most bacterial flagellar proteins are exported by the flagellar type III protein export apparatus for their self‐assembly. FliI ATPase forms a complex with its regulator FliH and facilitates initial entry of export substrates to the export gate composed of six integral membrane proteins. The FliH–FliI complex also binds to the C ring of the basal body through a FliH–FliN interaction for efficient export. However, it remains unclear how these reactions proceed within the cell. Here, we analysed subcellular localization of FliI–YFP by fluorescence microscopy. FliI–YFP was localized to the flagellar base, and its localization required both FliH and the C ring. The ATPase activity of FliI was not required for its localization. FliI–YFP formed a complex with FliHΔ1 (missing residues 2–10) but the complex did not show any localization. FliHΔ1 did not interact with FliN, and alanine‐scanning mutagenesis revealed that only Trp‐7 and Trp‐10 of FliH are essential for the interaction with FliN. Overproduction of the FliH–FliI complex improved the export activity of the fliN mutant whereas neither of the FliH(W7A)‐FliI nor FliH(W10A)‐FliI complexes did, suggesting that Trp‐7 and Trp‐10 of FliH are also required for efficient localization of the FliH–FliI complex to the export gate.  相似文献   

6.
The interaction of FaeE, a periplasmic chaperone involved in K8B biosynthesis, and the major fimbrial subunit FaeG was Investigated. The genes encoding the two proteins were subcloned together in the expression vector pINIIIA1, Cells expressing the sub-cloned genes accumulated in their periplasm a complex of FaeE and FaeG. This complex was purified by isoelectric focusing and anion-exchange fast-protein liquid chromatography. SOS-PAGE, native gel etectrophoresis, immunoblotting and determination of the N-terminal amino acid sequences and the molar ratio of the W-terminal amino acid residues revealed that the complex is a heterotrimer consisting of two molecules of FaeE and one molecule of FaeG. The periplasmic chaperone FaeE was purified from the periplasm of cells expressing only the subcloned faeE gene. Gel filtration, protein cross-linking analysis and a biophysical approach in which the rotation diffusion coefficient of the purified FaeE was determined led to the conclusion that the native FaeE chaperone is a homodimer.  相似文献   

7.
FliT is a flagellar type III export chaperone specific for the filament-capping protein FliD. The FliT/FliD complex binds to the FliI ATPase of the flagellar export apparatus. The C-terminal α4 helix of FliT controls its interaction with FliI but it remains unknown how it does so. Here, we analysed the FliI-FliT interaction by pull-down assays using GST affinity chromatography. FliT94, missing the C-terminal α4 helix, bound to the extreme N-terminal region of FliI (FliI(EN)) with high affinity and to the C-terminal ATPase domain (FliI(CAT)) with low affinity. The C-terminal α4 helix of FliT suppressed the interaction with FliI(EN). FliH and FliT94 bound to a common binding site on FliI(EN) and hence FliH induced the release of FliI from FliT94 in an ATP-independent manner. FliD increased the binding affinity of FliI(CAT) for FliT. These results raise a possible hypothesis that the FliH/FliI complex binds to the FliT/FliD complex through FliI(CAT) to escort it from the cytoplasm to the export gate made up of six integral membrane proteins and that, upon dissociation of FliD from FliT, FliT94 may bind to FliI(EN) and then FliI may transfer from FliT94 to FliH by the direct competition of FliT94 and FliH for FliI(EN).  相似文献   

8.
FliI, the ATPase involved in bacterial flagellar protein export, forms a complex with its regulator FliH in the cytoplasm and hexamerizes upon docking to the export gate composed of integral membrane proteins. The extreme N-terminal region of FliI is involved not only in its interaction with FliH but also in its oligomerization, but the regulatory mechanism of oligomerization remains unclear. Using in-frame 10-residue deletions within the 100 residues of the N-terminal domain, we demonstrate that the first 20 residues are required for FliH binding and that the conformation of the N-terminal domain is sensitive to the export function, even though the oligomerization and FliH-binding ability are retained and the ATPase activity is maintained in most of the deletion variants.  相似文献   

9.
Interactions among several components of the flagellar export apparatus of Salmonella were studied using affinity chromatography, affinity blotting, and fluorescence resonance energy transfer (FRET). The components examined were two integral membrane proteins, FlhA and FlhB, and two soluble components, FliH and the ATPase FliI. Affinity chromatography and affinity blotting demonstrated a heterologous interaction between FlhA and FlhB but not homologous FlhA-FlhA or FlhB-FlhB interactions. Both FlhA and FlhB consist of N-terminal transmembrane domains and C-terminal cytoplasmic domains (FlhA(C) and FlhB(C)). To study the interactions among the cytoplasmic components (FlhA(C), FlhB(C), FliH, and FliI), FRET measurements were carried out using fluorescein-5-isothiocyanate (FITC) as donor and tetramethylrhodamine-5- (and 6-) isothiocyanate (TRITC) as acceptor. To reveal the nature of the binding interactions, measurements were carried out in physiological buffer, at high salt (0.5 M NaCl) and in 30% 2-propanol. The results indicated that FlhA(C) could bind to FlhB(C) and both FlhA(C) and FlhB(C) could bind to themselves. Both FlhA(C) and FlhB(C) bound to FliH and FliI. Several in-frame deletion mutants of FliH were examined and found to have only minor effects of decreased binding to FlhA(C) and FlhB(C); deletions in the interior of the FliH sequence had a greater effect than those at the N terminus. The FliI mutants examined bound FlhA(C) and FlhB(C) about the same as or slightly more weakly than wild-type FliI. FliH bound more weakly to FliI carrying the N-terminal double mutation R7C/L12P than it did to wild-type FliI, confirming the importance of the N terminus of FliI for its interaction with FliH.  相似文献   

10.
The specialised ATPase FliI is central to export of flagellar axial protein subunits during flagellum assembly. We establish the normal cellular location of FliI and its regulatory accessory protein FliH in motile Salmonella typhimurium, and ascertain the regions involved in FliH(2)/FliI heterotrimerisation. Both FliI and FliH localised to the cytoplasmic membrane in the presence and in the absence of proteins making up the flagellar export machinery and basal body. Membrane association was tight, and FliI and FliH interacted with Escherichia coli phospholipids in vitro, both separately and as the preformed FliH(2)/FliI complex, in the presence or in the absence of ATP. Yeast two-hybrid analysis and pull-down assays revealed that the C-terminal half of FliH (H105-235) directs FliH homodimerisation, and interacts with the N-terminal region of FliI (I1-155), which in turn has an intra-molecular interaction with the remainder of the protein (I156-456) containing the ATPase domain. The FliH105-235 interaction with FliI was sufficient to exert the FliH-mediated down-regulation of ATPase activity. The basal ATPase activity of isolated FliI was stimulated tenfold by bacterial (acidic) phospholipids, such that activity was 100-fold higher than when bound by FliH in the absence of phospholipids. The results indicate similarities between FliI and the well-characterised SecA ATPase that energises general protein secretion. They suggest that FliI and FliH are intrinsically targeted to the inner membrane before contacting the flagellar secretion machinery, with both FliH105-235 and membrane phospholipids interacting with FliI to couple ATP hydrolysis to flagellum assembly.  相似文献   

11.
FliH regulates the flagellar export ATPase FliI, preventing nonproductive ATP hydrolysis. FliH has been shown to stably associate with the C ring protein FliN. Analysis of this complex reveals that FliH is required for FliI localization to the C ring, and thus FliH not only inhibits FliI ATPase activity but also may act to target FliI to the basal body. Quantitative binding studies revealed a KD of 110 nM for FliH binding to FliN. The KD for FliH binding of a FliN variant from a temperature-sensitive nonflagellate fliN point mutant was determined to be 270 nM, suggesting a molecular explanation for its phenotype. Another variant FliN from a temperature-sensitive mutant with a different phenotype displayed binding with an intermediate affinity. Weak export activity in a fliN null mutant was greatly increased by overproduction of FliI, mimicking a previously observed FliH bypass effect and supporting the conclusion that FliN-FliH binding is important for localization of FliI to the C ring and thus the membrane-embedded export apparatus beyond. A model incorporating the present findings is presented.  相似文献   

12.
Hara N  Namba K  Minamino T 《PloS one》2011,6(7):e22417
For assembly of the bacterial flagellum, most of flagellar proteins are transported to the distal end of the flagellum by the flagellar type III protein export apparatus powered by proton motive force (PMF) across the cytoplasmic membrane. FlhA is an integral membrane protein of the export apparatus and is involved in an early stage of the export process along with three soluble proteins, FliH, FliI, and FliJ, but the energy coupling mechanism remains unknown. Here, we carried out site-directed mutagenesis of eight, highly conserved charged residues in putative juxta- and trans-membrane helices of FlhA. Only Asp-208 was an essential acidic residue. Most of the FlhA substitutions were tolerated, but resulted in loss-of-function in the ΔfliH-fliI mutant background, even with the second-site flhB(P28T) mutation that increases the probability of flagellar protein export in the absence of FliH and FliI. The addition of FliH and FliI allowed the D45A, R85A, R94K and R270A mutant proteins to work even in the presence of the flhB(P28T) mutation. Suppressor analysis of a flhA(K203W) mutation showed an interaction between FlhA and FliR. Taken all together, we suggest that Asp-208 is directly involved in PMF-driven protein export and that the cooperative interactions of FlhA with FlhB, FliH, FliI, and FliR drive the translocation of export substrate.  相似文献   

13.
We have examined the cytoplasmic components (FliH, FliI and FliJ) of the type III flagellar protein export apparatus, plus the cytoplasmic domains (FlhAC and FlhBC) of two of its six membrane components. FliH, FlhAC and FliJ, when overproduced, caused inhibition of motility of wild-type cells and inhibition of the export of substrates such as the hook protein FlgE. Co-overproduction of FliH and FliI substantially relieved the inhibition caused by FliH, suggesting that it is excess free FliH that is inhibitory and that FliH and FliI form a complex. We purified His-FLAG-tagged versions of: (i) export components FliH, FliI, FliJ, FlhAC and FlhBC; (ii) rod/hook-type export substrates FlgB (rod protein), FlgE (hook protein), FlgD (hook capping protein) and FliE (basal body protein); and (iii) filament-type export substrates FlgK and FlgL (hook-filament junction proteins) and FliC (flagellin). We tested for protein-protein interactions by affinity blotting. In many cases, a given protein interacted with more than one other component, indicating that there are likely to be multiple dynamic interactions or interactions that involve more than two components. Interactions of FlhBC with rod/hook-type substrates were strong, whereas those with filament-type substrates were very weak; this may reflect the role of FlhB in substrate specificity switching. We propose a model for the flagellar export apparatus in which FlhA and FlhB and the other four integral membrane proteins of the apparatus form a complex at the base of the flagellar motor. A soluble complex of at least three proteins (FliH, FliI and FliJ) bind the protein to be exported and then interact with the complex at the motor to deliver the protein, which is then exported in an ATP-dependent process mediated by FliI.  相似文献   

14.
Salmonella FliI is the ATPase that drives flagellar protein export. It normally exists as a complex together with the regulatory protein FliH. A fliH null mutant was slightly motile, with overproduction of FliI resulting in substantial improvement of its motility. Mutations in the cytoplasmic domains of FlhA and FlhB, which are integral membrane components of the type III flagellar export apparatus, also resulted in substantially improved motility, even at normal FliI levels. Thus, FliH, though undoubtedly important, is not essential.  相似文献   

15.
The flagellar switch proteins of Salmonella, FliG, FliM and FliN, participate in the switching of motor rotation, torque generation and flagellar assembly/export. FliN has been implicated in the flagellar export process. To address this possibility, we constructed 10-amino-acid scanning deletions and larger truncations over the C-terminal domain of FliN. Except for the last deletion variant, all other variants were unable to complement a fliN null strain or to restore the export of flagellar proteins. Most of the deletions showed strong negative dominance effects on wild-type cells. FliN was found to associate with FliH, a flagellar export component that regulates the ATPase activity of FliI. The binding of FliM to FliN does not interfere with this FliN-FliH interaction. Furthermore, a five-protein complex consisting of FliG, His-tagged FliM, FliN, FliH and FliI was purified by nickel-affinity chromatography. FliJ, a putative general chaperone, is bound to FliM even in the absence of FliH. The importance of the C ring as a possible docking site for export substrates, chaperones and FliI through FliH for their efficient delivery to membrane components of the export apparatus is discussed.  相似文献   

16.
An inulin fructotransferase (DFA I-producing) [EC 2.4.1.200] from Arthrobacter pascens a62-1 was purified and the properties of the enzyme were investigated. The enzyme was purified from culture supernatant of the microorganism 58.5 fold with a yield of 8.32% using Super Q Toyopearl chromatography and butyl Toyopearl chromatography. It showed maximum activity at pH 5.5 and 45 °C and was stable up to 75 °C. This heat stability was highest in the inulin fructotransferases (DFA I-producing) reported until now. The molecular mass of the enzyme was estimated to be 37,000 by SDS-PAGE and 60,000 by gel filtration, and was considered to be a dimer. The N-terminal amino acid sequence (20 amino acid residues) was determined as Ala-Asn-Thr-Val-Tyr-Asp-Val-Thr-Thr-Trp-Ser-Gly-Ala-Thr-Ile-Ser-Pro-Tyr-Val-Asp.  相似文献   

17.
Purification of rabbit and human serum paraoxonase.   总被引:8,自引:0,他引:8  
Rabbit serum paraoxonase/arylesterase has been purified to homogeneity by Cibacron Blue-agarose chromatography, gel filtration, DEAE-Trisacryl M chromatography, and preparative SDS gel electrophoresis. Renaturation (Copeland et al., 1982) and activity staining of the enzyme resolved by SDS gel electrophoresis allowed for identification and purification of paraoxonase. Two bands of active enzyme were purified by this procedure (35,000 and 38,000). Enzyme electroeluted from the preparative gels was reanalyzed by analytical SDS gel electrophoresis, and two higher molecular weight bands (43,000 and 48,000) were observed in addition to the original bands. This suggested that repeat electrophoresis resulted in an unfolding or other modification and slower migration of some of the purified protein. The lower mobility bands stained weakly for paraoxonase activity in preparative gels. Bands of each molecular weight species were electroblotted onto PVDF membranes and sequenced. The gas-phase sequence analysis showed that both the active bands and apparent molecular weight bands had identical amino-terminal sequences. Amino acid analysis of the four electrophoretic components from PVDF membranes also indicated compositional similarity. The amino-terminal sequences are typical of the leader sequences of secreted proteins. Human serum paraoxonase was purified by a similar procedure, and ten residues of the amino terminus were sequenced by gas-phase procedures. One amino acid difference between the first ten residues of human and rabbit was observed.  相似文献   

18.
Streptococcus lactis NCDO763 harbours a plasmid designated pLP763. The cells harbouring pLP763 are able to grow to a higher density in milk because of their proteinase-positive phenotype (Prt+). The 6.2 kb HindIII-PstI fragment from pLP763 was found to be responsible for the Prt+ phenotype. The DNA fragment contains an incomplete large open reading frame (ORF). Further sequence analysis downstream from the PstI site revealed that the ORF consists of 5706 bases. It was found that the deduced amino acid sequence consisting of 1902 amino acid residues was extremely similar to that of the Wg2 proteinase, a serine protease from Streptococcus cremoris, suggesting that both genes were derived from a common ancestral gene.  相似文献   

19.
The luteinizing hormone isolated from sperm-whale pituitary was separated into two subunits, alpha- and beta-, by ion-exchange chromatography on sulfoethyl-Sephadex. The hormone subunits were reconstituted, carboxymethylated and cleaved by BrCN and proteolytic enzymes. In order to block tryptic hydrolysis at lysine residues the alpha-subunit was subjected to maleylation. Large-sized fragments of BrCN were cleaved by chymotrypsin and trypsin, while large-sized fragments of trypsin were split by chymotrypsin. The resulting peptides were separated by gel filtration on Sephadex, ion-exchange chromatography on Aminex A-5 and thin-layer partition chromatography on cellulose. The amino acid sequence of the peptides was determined by the Edman method, using identification of the N-terminal amino acids in a reaction with dansyl chloride or dimethylaminoazobenzene-4-isothiocyanate. It was shown that the alpha-subunit of the luteinizing hormone is a peptide chain consisting of 96 amino acid residues with covalently linked carbon chains at asparagine residues at positions 56 and 82. The N-terminal amino acid of the alpha-subunit is phenylalanine, the C-terminal amino acid is serine. The alpha-subunit is heterogeneous at the N-end, i. e. beside phenylalanine it contains threonine and trace amounts of proline, aspartate, glutamate and glycine.  相似文献   

20.
A less-cytotoxic polypeptide, designated as LCBP, was isolated from the venom of Naja naja by gel filtration on Sephadex G-50 followed by CM-cellulose chromatography. The cytotoxicity toward Yoshida sarcoma cells and lethal toxicity toward mice of LCBP were both one order of magnitude lower than that of cytotoxins and that of toxin A, respectively. LCBP is a single polypeptide consisting of 61 amino acid residues with four intramolecular disulfide linkages, and the amino acid sequence is the same as that of cardiotoxin-like basic polypeptide (CLBP) isolated from the venom of Naja naja atra. This is the first time that the same polypeptides were isolated from different cobra venoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号