首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lin YH  Chang BC  Chiang PW  Tang SL 《Gene》2008,416(1-2):44-47
According to recent reports, many ribosomal RNA gene annotations are still questionable, and the use of inappropriate tools for annotation has been blamed. However, we believe that the abundant 16S rRNA partial sequence in the databases, mainly created by culture-independent PCR methods, is another main cause of the ambiguous annotations of 16S rRNA. To examine the current status of 16S rRNA gene annotations in complete microbial genomes, we used as a criterion the conserved anti-SD sequence, located at the 3′ end of the 16S rRNA gene, which is commonly overlooked by culture-independent PCR methods. In our large survey, 859 16S rRNA gene sequences from 252 different species of the microbial complete genomes were inspected. 67 species (234 genes) were detected with ambiguous annotations. The common anti-SD sequence and other conserved 16S rRNA sequence features could be detected in the downstream-intergenic regions for almost every questionable sequence, indicating that many of the 16S rRNA genes were annotated incorrectly. Furthermore, we found that more than 91.5% of the 93,716 sequences of the available 16S rRNA in the main databases are partial sequences. We also performed BLAST analysis for every questionable rRNA sequence, and most of the best hits in the analysis were rRNA partial sequences. This result indicates that partial sequences are prevalent in the databases, and that these sequences have significantly affected the accuracy of microbial genomic annotation. We suggest that the annotation of 16S rRNA genes in newly complete microbial genomes must be done in more detail, and that revision of questionable rRNA annotations should commence as soon as possible.  相似文献   

2.
Comparative sequence analysis addresses the problem of RNA folding and RNA structural diversity, and is responsible for determining the folding of many RNA molecules, including 5S, 16S, and 23S rRNAs, tRNA, RNAse P RNA, and Group I and II introns. Initially this method was utilized to fold these sequences into their secondary structures. More recently, this method has revealed numerous tertiary correlations, elucidating novel RNA structural motifs, several of which have been experimentally tested and verified, substantiating the general application of this approach. As successful as the comparative methods have been in elucidating higher-order structure, it is clear that additional structure constraints remain to be found. Deciphering such constraints requires more sensitive and rigorous protocols, in addition to RNA sequence datasets that contain additional phylogenetic diversity and an overall increase in the number of sequences. Various RNA databases, including the tRNA and rRNA sequence datasets, continue to grow in number as well as diversity. Described herein is the development of more rigorous comparative analysis protocols. Our initial development and applications on different RNA datasets have been very encouraging. Such analyses on tRNA, 16S and 23S rRNA are substantiating previously proposed associations and are now beginning to reveal additional constraints on these molecules. A subset of these involve several positions that correlate simultaneously with one another, implying units larger than a basepair can be under a phylogenetic constraint.  相似文献   

3.
16S rRNA基因在微生物生态学中的应用   总被引:10,自引:0,他引:10  
16S rRNA(Small subunit ribosomal RNA)基因是对原核微生物进行系统进化分类研究时最常用的分子标志物(Biomarker),广泛应用于微生物生态学研究中。近些年来随着高通量测序技术及数据分析方法等的不断进步,大量基于16S rRNA基因的研究使得微生物生态学得到了快速发展,然而使用16S rRNA基因作为分子标志物时也存在诸多问题,比如水平基因转移、多拷贝的异质性、基因扩增效率的差异、数据分析方法的选择等,这些问题影响了微生物群落组成和多样性分析时的准确性。对当前使用16S rRNA基因分析微生物群落组成和多样性的进展情况做一总结,重点讨论当前存在的主要问题以及各种分析方法的发展,尤其是与高通量测序技术有关的实验和数据处理问题。  相似文献   

4.
Miniprimer PCR, a New Lens for Viewing the Microbial World   总被引:1,自引:0,他引:1       下载免费PDF全文
Molecular methods based on the 16S rRNA gene sequence are used widely in microbial ecology to reveal the diversity of microbial populations in environmental samples. Here we show that a new PCR method using an engineered polymerase and 10-nucleotide “miniprimers” expands the scope of detectable sequences beyond those detected by standard methods using longer primers and Taq polymerase. After testing the method in silico to identify divergent ribosomal genes in previously cloned environmental sequences, we applied the method to soil and microbial mat samples, which revealed novel 16S rRNA gene sequences that would not have been detected with standard primers. Deeply divergent sequences were discovered with high frequency and included representatives that define two new division-level taxa, designated CR1 and CR2, suggesting that miniprimer PCR may reveal new dimensions of microbial diversity.  相似文献   

5.
Despite its widespread distribution and high levels of phylogenetic diversity, microbes are poorly understood creatures. We applied a phylogenetic ecology approach in the Kingdom Euryarchaeota (Archaea) to gain insight into the environmental distribution and evolutionary history of one of the most ubiquitous and largely unknown microbial groups. We compiled 16S rRNA gene sequences from our own sequence libraries and public genetic databases for two of the most widespread mesophilic Euryarchaeota clades, Lake Dagow Sediment (LDS) and Rice Cluster-V (RC-V). The inferred population history indicated that both groups have undergone specific nonrandom evolution within environments, with several noteworthy habitat transition events. Remarkably, the LDS and RC-V groups had enormous levels of genetic diversity when compared with other microbial groups, and proliferation of sequences within each single clade was accompanied by significant ecological differentiation. Additionally, the freshwater Euryarchaeota counterparts unexpectedly showed high phylogenetic diversity, possibly promoted by their environmental adaptability and the heterogeneous nature of freshwater ecosystems. The temporal phylogenetic diversification pattern of these freshwater Euryarchaeota was concentrated both in early times and recently, similarly to other much less diverse but deeply sampled archaeal groups, further stressing that their genetic diversity is a function of environment plasticity. For the vast majority of living beings on Earth (i.e. the uncultured microorganisms), how they differ in the genetic or physiological traits used to exploit the environmental resources is largely unknown. Inferring population history from 16S rRNA gene-based molecular phylogenies under an ecological perspective may shed light on the intriguing relationships between lineage, environment, evolution and diversity in the microbial world.  相似文献   

6.
A combination of culture-dependent and culture-independent methodologies (Bacteria and Archaea 16S rRNA gene clone library analyses) was used to determine the microbial diversity present within a geographically distinct high Arctic permafrost sample. Culturable Bacteria isolates, identified by 16S rRNA gene sequencing, belonged to the phyla Firmicutes, Actinobacteria and Proteobacteria with spore-forming Firmicutes being the most abundant; the majority of the isolates (19/23) were psychrotolerant, some (11/23) were halotolerant, and three isolates grew at -5 degrees C. A Bacteria 16S rRNA gene library containing 101 clones was composed of 42 phylotypes related to diverse phylogenetic groups including the Actinobacteria, Proteobacteria, Firmicutes, Cytophaga - Flavobacteria - Bacteroides, Planctomyces and Gemmatimonadetes; the bacterial 16S rRNA gene phylotypes were dominated by Actinobacteria- and Proteobacteria-related sequences. An Archaea 16S rRNA gene clone library containing 56 clones was made up of 11 phylotypes and contained sequences related to both of the major Archaea domains (Euryarchaeota and Crenarchaeota); the majority of sequences in the Archaea library were related to halophilic Archaea. Characterization of the microbial diversity existing within permafrost environments is important as it will lead to a better understanding of how microorganisms function and survive in such extreme cryoenvironments.  相似文献   

7.
We evaluated the impact of the base analogue inosine substituted at the 3'-terminus of broad-range 16S rRNA gene primers on the recovery of microbial diversity using terminal restriction fragment length polymorphism and clonal analysis. Oral plaque biofilms from 10 individuals were tested with modified and unmodified primer pairs. Besides a core overlap of shared terminal restriction fragments (T-RFs), each primer system provided unique information on the occurrence of T-RFs, with a higher number generally displayed with inosine primers. All clones sequenced were at least 99% identical to publicly available full-length sequences. Analysis of the corresponding primer-binding sites showed that most sequence types were 100% complementary to the unmodified primers so that the characteristic of inosine to bind with all four nucleotides was not crucial for the observed increase in microbial richness. Instead, differences in community compositions were correlated with the identity of the nearest-neighbor 3' of the primer-targeting region. By influencing the thermal stability of primer hybridization, this position may play a previously unrecognized role in biased amplification of 16S rRNA gene sequences. In conclusion, the combined use of inosine and unmodified primers enables the complementary retrieval of 16S rRNA gene types, thereby expanding the observed diversity of complex microbial communities.  相似文献   

8.
Cyanobacteria are photosynthetic bacteria that occupy various habitats across the globe, playing critical roles in many of Earth's biogeochemical cycles both in both aquatic and terrestrial systems. Despite their well-known significance, their taxonomy remains problematic and is the subject of much research. Taxonomic issues of Cyanobacteria have consequently led to inaccurate curation within known reference databases, ultimately leading to problematic taxonomic assignment during diversity studies. Recent advances in sequencing technologies have increased our ability to characterize and understand microbial communities, leading to the generation of thousands of sequences that require taxonomic assignment. We herein propose CyanoSeq ( https://zenodo.org/record/7569105 ), a database of cyanobacterial 16S rRNA gene sequences with curated taxonomy. The taxonomy of CyanoSeq is based on the current state of cyanobacterial taxonomy, with ranks from the domain to genus level. Files are provided for use with common naive Bayes taxonomic classifiers, such as those included in DADA2 or the QIIME2 platform. Additionally, FASTA files are provided for creation of de novo phylogenetic trees with (near) full-length 16S rRNA gene sequences to determine the phylogenetic relationship of cyanobacterial strains and/or ASV/OTUs. The database currently consists of 5410 cyanobacterial 16S rRNA gene sequences along with 123 Chloroplast, Bacterial, and Vampirovibrionia (formally Melainabacteria) sequences.  相似文献   

9.
Next-generation sequencing technologies have led to recognition of a so-called ‘rare biosphere''. These microbial operational taxonomic units (OTUs) are defined by low relative abundance and may be specifically adapted to maintaining low population sizes. We hypothesized that mining of low-abundance next-generation 16S ribosomal RNA (rRNA) gene data would lead to the discovery of novel phylogenetic diversity, reflecting microorganisms not yet discovered by previous sampling efforts. Here, we test this hypothesis by combining molecular and bioinformatic approaches for targeted retrieval of phylogenetic novelty within rare biosphere OTUs. We combined BLASTN network analysis, phylogenetics and targeted primer design to amplify 16S rRNA gene sequences from unique potential bacterial lineages, comprising part of the rare biosphere from a multi-million sequence data set from an Arctic tundra soil sample. Demonstrating the feasibility of the protocol developed here, three of seven recovered phylogenetic lineages represented extremely divergent taxonomic entities. These divergent target sequences correspond to (a) a previously unknown lineage within the BRC1 candidate phylum, (b) a sister group to the early diverging and currently recognized monospecific Cyanobacteria Gloeobacter, a genus containing multiple plesiomorphic traits and (c) a highly divergent lineage phylogenetically resolved within mitochondria. A comparison to twelve next-generation data sets from additional soils suggested persistent low-abundance distributions of these novel 16S rRNA genes. The results demonstrate this sequence analysis and retrieval pipeline as applicable for exploring underrepresented phylogenetic novelty and recovering taxa that may represent significant steps in bacterial evolution.  相似文献   

10.
The analysis of amplified and sequenced 16S rRNA genes has become the most important single approach for microbial diversity studies. The new sequencing technologies allow for sequencing thousands of reads in a single run and a cost-effective option is split into a single run across many samples. However for this type of investigation the key question that needs to be answered is how many samples can be sequenced without biasing the results due to lack of sequence representativeness? In this work we demonstrated that the level of sequencing effort used for analyzing soil microbial communities biases the results and determines the most effective type of analysis for small and large datasets. Many simulations were performed with four independent pyrosequencing-generated 16S rRNA gene libraries from different environments. The analysis performed here illustrates the lack of resolution of OTU-based approaches for datasets with low sequence coverage. This analysis should be performed with at least 90% of sequence coverage. Diversity index values increase with sample size making normalization of the number of sequences in all samples crucial. An important finding of this study was the advantage of phylogenetic approaches for examining microbial communities with low sequence coverage. However, if the environments being compared were closely related, a deeper sequencing would be necessary to detect the variation in the microbial composition.  相似文献   

11.
The deep sequencing of 16S rRNA genes amplified by universal primers has revolutionized our understanding of microbial communities by allowing the characterization of the diversity of the uncultured majority. However, some universal primers also amplify eukaryotic rRNA genes, leading to a decrease in the efficiency of sequencing of prokaryotic 16S rRNA genes with possible mischaracterization of the diversity in the microbial community. In this study, we compared 16S rRNA gene sequences from genome-sequenced strains and identified candidates for non-degenerate universal primers that could be used for the amplification of prokaryotic 16S rRNA genes. The 50 identified candidates were investigated to calculate their coverage for prokaryotic and eukaryotic rRNA genes, including those from uncultured taxa and eukaryotic organelles, and a novel universal primer set, 342F-806R, covering many prokaryotic, but not eukaryotic, rRNA genes was identified. This primer set was validated by the amplification of 16S rRNA genes from a soil metagenomic sample and subsequent pyrosequencing using the Roche 454 platform. The same sample was also used for pyrosequencing of the amplicons by employing a commonly used primer set, 338F-533R, and for shotgun metagenomic sequencing using the Illumina platform. Our comparison of the taxonomic compositions inferred by the three sequencing experiments indicated that the non-degenerate 342F-806R primer set can characterize the taxonomic composition of the microbial community without substantial bias, and is highly expected to be applicable to the analysis of a wide variety of microbial communities.  相似文献   

12.
16S rRNA序列分析法在医学微生物鉴定中的应用   总被引:26,自引:0,他引:26  
周煜 《生物技术通讯》1999,10(4):297-305
16S rRNA序列分析作为微生物系统分类的主要依据已得到了广泛认同,随着微生物核糖体数据库的日益完善,该技术成为细菌分类和鉴定的一个有力工具。本文概述了 165 rRNA序列分析法的技术步骤以及该技术在医学微生物研究中的应用,总结了目前文献报导的各种致病微生物种属特异性 165 rRNA引物和探针序列,同时分析了该技术在应用中存在的一些问题。  相似文献   

13.
Two specific primers were developed for the amplification of 16S rRNA genes of Desulfotomaculum lineage 1 to detect members of the genus Desulfotomaculum in rice field soil. The combination of both primers in PCR allowed the specific amplification and cloning of ten 16S rDNA sequences of this group from rice paddy soil DNA extracts. The phylogenetic analysis showed that these sequences formed a deeply branching cluster within Desulfotomaculum lineage 1, together with two sequences from the database and two sequences from a hydrocarbon-contaminated aquifer. Dissimilarity values to validly described species, including recently isolated strains of Desulfotomaculum from rice paddy microcosms, were higher than 12%. Within the new cluster the cloned sequences formed three separate groups which were each represented by at least two sequences with identities of >/=99% while one sequence represented an additional group. The sequences should represent sulfate-reducing organisms because they clearly fell into the physiologically coherent group of Gram-positive sulfate reducers. The relative abundance of bacteria of the Desulfotomaculum lineage 1 in rice paddy soil and root samples was estimated with rRNA dot blot hybridizations of extracted RNA. The relative RNA content of Desulfotomaculum lineage 1 was 0.55% in the bulk soil and 1% in the rice root samples, respectively, of the total 16S rRNA content (probe Eub338). Hybridization of rRNA with a probe targeting the new cluster represented by the cloned sequences confirmed the high abundance of 16S rRNA sequences from this cluster in the rice paddy field samples. Another hybridization probe detecting Desulfotomaculum acetoxidans and two closely related Desulfotomaculum isolates from rice paddy soil indicated that these bacteria were less abundant.  相似文献   

14.
Sequencing ribosomal RNA (rRNA) genes is currently the method of choice for phylogenetic reconstruction, nucleic acid based detection and quantification of microbial diversity. The ARB software suite with its corresponding rRNA datasets has been accepted by researchers worldwide as a standard tool for large scale rRNA analysis. However, the rapid increase of publicly available rRNA sequence data has recently hampered the maintenance of comprehensive and curated rRNA knowledge databases. A new system, SILVA (from Latin silva, forest), was implemented to provide a central comprehensive web resource for up to date, quality controlled databases of aligned rRNA sequences from the Bacteria, Archaea and Eukarya domains. All sequences are checked for anomalies, carry a rich set of sequence associated contextual information, have multiple taxonomic classifications, and the latest validly described nomenclature. Furthermore, two precompiled sequence datasets compatible with ARB are offered for download on the SILVA website: (i) the reference (Ref) datasets, comprising only high quality, nearly full length sequences suitable for in-depth phylogenetic analysis and probe design and (ii) the comprehensive Parc datasets with all publicly available rRNA sequences longer than 300 nucleotides suitable for biodiversity analyses. The latest publicly available database release 91 (August 2007) hosts 547 521 sequences split into 461 823 small subunit and 85 689 large subunit rRNAs.  相似文献   

15.
The Lianyungang salt ponds are an extreme saline environment, and their microbial communities have not been characterized. A typical extreme halophilic archaeon strain designated as HBCC-2 (GenBank accession number: EF687739) was isolated from the salt ponds of Lianyungang in Jiangsu Province, P. R. China, using conventional microbial culture methods. The other halotolerant bacterial strain designated as HBCC-3 (GenBank accession number: EU377478) was isolated from the same sampling sites. The morphological and physiological characteristics of HBCC-2 and HBCC-3 were observed and examined. G+C content of HBCC-2 and HBCC-3 were determined using high-performance liquid chromatography. The cellular phospholipid fatty acids were analyzed using gas chromatography-mass spectrometry. The 16S rRNA gene sequences of the strains HBCC-2 and HBCC-3 were amplified by PCR using archaeal primers and bacterial primers, respectively. Homology of 16S rRNA gene sequences of the strains HBCC-2 and HBCC-3 were compared with the other similar sequences obtained from GenBank using the BLAST program. Phylogenetic analysis was performed using the software MEGA 4.0 after multiple alignments of sequence data using software CLUSTALW 1.8. The evolutional distances (by Kimura’s model) were calculated and the clusters were performed with the neighbor-joining method. The results showed that the 16S rRNA gene sequences of the strains HBCC-2 and HBCC-3 are related to the genera Halorubrum and Alkalibacillus, respectively. Two phylogenetic trees were constructed by phylogenetic analysis based on the 16S rRNA gene sequence. Based on the above results, the strains HBCC-2 and HBCC-3 were finally identified. The discovery of the two species provides an opportunity to further study these halophilic microorganisms in the Lianyungang salt ponds.  相似文献   

16.
Two decades of culture-independent studies have confirmed that microbial communities represent the most complex and concentrated pool of phylogenetic diversity on the planet. There remains a need for innovative molecular tools that can further our knowledge of microbial diversity and its functional implications. We present the method and application of serial analysis of ribosomal sequence tags (SARST) as a novel tool for elucidating complex microbial communities, such as those found in soils and sediments. Serial analysis of ribosomal sequence tags uses a series of enzymatic reactions to amplify and ligate ribosomal sequence tags (RSTs) from bacterial small subunit rRNA gene (SSU rDNA) V1-regions into concatemers that are cloned and sequenced. This approach offers a significant increase in throughput over traditional SSU rDNA clone libraries, as up to 20 RSTs are obtained from each sequencing reaction. To test SARST and measure the bias associated with this approach, RST libraries were prepared from a defined mixture of pure cultures and from duplicate arctic soil DNA samples. The actual RST distribution reflected the theoretical composition of the original defined mixture. Data from duplicate soil libraries (1345 and 1217 RSTs, with 525 and 505 unique RSTs, respectively) indicated that replication provides a strongly correlated RST profile (r(2) = 0.80) and division-level distribution of RSTs (r(2) = 0.99). Using sequence data from abundant soil RSTs, we designed specific primers that successfully amplified a larger portion of the SSU rDNA for further phylogenetic analysis. These results suggest that SARST is a powerful approach for reproducible high-throughput profiling of microbial diversity amenable to medical, industrial or environmental microbiology applications.  相似文献   

17.
The recent introduction of massively parallel pyrosequencers allows rapid, inexpensive analysis of microbial community composition using 16S ribosomal RNA (rRNA) sequences. However, a major challenge is to design a workflow so that taxonomic information can be accurately and rapidly assigned to each read, so that the composition of each community can be linked back to likely ecological roles played by members of each species, genus, family or phylum. Here, we use three large 16S rRNA datasets to test whether taxonomic information based on the full-length sequences can be recaptured by short reads that simulate the pyrosequencer outputs. We find that different taxonomic assignment methods vary radically in their ability to recapture the taxonomic information in full-length 16S rRNA sequences: most methods are sensitive to the region of the 16S rRNA gene that is targeted for sequencing, but many combinations of methods and rRNA regions produce consistent and accurate results. To process large datasets of partial 16S rRNA sequences obtained from surveys of various microbial communities, including those from human body habitats, we recommend the use of Greengenes or RDP classifier with fragments of at least 250 bases, starting from one of the primers R357, R534, R798, F343 or F517.  相似文献   

18.
16S rRNA-based analysis of microbiota from the cecum of broiler chickens.   总被引:6,自引:0,他引:6  
The microbiota of the intestinal tract of chickens plays an important role in inhibiting the establishment of intestinal pathogens. Earlier culturing and microscopic examinations indicated that only a fraction of the bacteria in the cecum of chickens could be grown in the laboratory. Therefore, a survey of cecal bacteria was done by retrieval of 16S rRNA gene sequences from DNA isolated from the cecal content and the cecal mucosa. The ribosomal gene sequences were amplified with universal primers and cloned or subjected to temporal temperature gradient gel electrophoresis (TTGE). Partial 16S rRNA gene sequences were determined from the clones and from the major bands in TTGE gels. A total of 1,656 partial 16S rRNA gene sequences were obtained and compared to sequences in the GenBank. The comparison indicated that 243 different sequences were present in the samples. Overall, sequences representing 50 phylogenetic groups or subgroups of bacteria were found, but approximately 89% of the sequences represented just four phylogenetic groups (Clostridium leptum, Sporomusa sp., Clostridium coccoides, and enterics). Sequences of members of the Bacteroides group, the Bifidobacterium infantis subgroup, and of Pseudomonas sp. each accounted for less than 2% of the total. Sequences related to those from the Escherichia sp. subgroup and from Lactobacillus, Pseudomonas, and Bifidobacterium spp. were generally between 98 and 100% identical to sequences already deposited in the GenBank. Sequences most closely related to those of the other bacteria were generally 97% or less identical to those in the databases and therefore might be from currently unknown species. TTGE and random cloning indicated that certain phylogenetic subgroups were common to all birds analyzed, but sequence data from random cloning also provided evidence for qualitative and quantitative differences among the cecal microbiota of individual birds reared under very similar conditions.  相似文献   

19.
Nucleotide sequence comparisons of three house-keeping genes, adenylate kinase (adk), shikimate dehydrogenase (aroE), and glucose-6-phosphate dehydrogenase (gdh), were used to infer the phylogeny of 33 gamma-proteobacteria. Phylogenetic trees inferred from each gene, and from the concatenated sequences of all three genes, are, in general, similar to a 16S rRNA gene-inferred tree. Similar grouping of bacteria are revealed at the family, genus, species and strain levels in all five trees. The house-keeping genes, however, show a higher rate of nucleotide sequence substitutions. Consequently, they can possibly probe deeper branches of a phylogenetic tree than the 16S rRNA gene. However, because their nucleotide sequences are not as highly conserved among gamma-proteobacteria, family- or genus-specific primers would need to be designed for the amplification of any of these three house-keeping genes. Since these genes are used in multilocus sequence typing, it is expected that the number of sequences publicly available for many taxa will increase over time proving them very useful either at complementing 16S rRNA-inferred phylogenies or for specific, targeted, phylogenetic analysis.  相似文献   

20.
A fraction of magnetotactic bacteria was isolated by magnetic separation from the water and silt samples collected from the Ol’khovka River (Kislovodsk, Russia). A 16S rRNA clone library was obtained from the total DNA of the fraction by PCR amplification and molecular cloning. Phylogenetic analysis of 67 16S rRNA gene sequences of randomly selected clones demonstrated that two phylotypes of magnetotactic bacteria were present in the library: the first phylotype consisted of 42 sequences and the second one included only one sequence. The remaining 24 sequences belonged to non-magnetotactic bacteria. According to the results of phylogenetic analysis, both phylotypes were magnetotactic cocci; the predominant sequences were almost identical to the 16S rRNA sequence of the freshwater coccus TB24 (X81185.1) identified earlier among the magnetotactic bacteria isolated from Lake Chiemsee (Bavaria). The phylotype represented by a single sequence formed a separate branch in the dendrogram, with 97% similarity between its sequence and that of TB24. The discovered phylotypes formed with the sequences of uncultured freshwater magnetotactic cocci a separate branch within the class Alphaproteobacteria and presumably belonged to a separate family within the recently described order Magnetococcales. Despite the fact that phylogenetic analysis of the 16S rRNA clone library did not reveal any phylotypes of magnetotactic spirilla, after the secondary enrichment of the fraction of magnetotactic bacteria using the “race track” technique, a new strain of magnetotactic spirilla, Magnetospirillum SO-1, was isolated. The closest relative of strain SO-1 was the previously described magnetotactic spirillum Magnetospirillum magneticum AMB-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号