首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effects of ABA on intracellular pH, net H+ extrusion, Cl? fluxes and Em values were studied in Elodea densa leaves, and the possible relationships between the ABA-induced changes of cytosolic pH and of Cl? and H+ fluxes were investigated. Cytosolic and vacuolar pH were calculated by the weak acid and weak base distribution method. The data show that, also in this material (a water plant without stomata), ABA induces a decrease in both net H+ extrusion and intracellular pH, and strongly inhibits Cl? efflux. No significant effect of ABA is detectable on Em values, either at short or long intervals in the presence or absence of K+. Cl? efflux is apparently independent of the activity of the plasmalemma H+ pump and of the Em values. Conversely, it strongly depends on the value of cytosolic pH, a larger efflux occurring for the lower pH values both in the presence and in the absence of ABA. These results indicate that the ABA-induced cytosolic acidification cannot be the cause but, possibly, a consequence of the decrease in Cl? efflux, and are consistent with the hypothesis of a primary role of ABA in regulating Cl? efflux, presumably by directly affecting a class of Cl?-permeable channels.  相似文献   

3.
Secretion of interferon (IFN) by virus-infected cells is essential for activating autocrine and paracrine pathways that promote cellular transition to an antiviral state. In most mammalian cells, IFN production is initiated by the activation of constitutively expressed IFN regulatory factor 3, IRF3, which in turn leads to the induction of IRF7, the "master regulator" of IFN type I synthesis (alpha/beta IFN). Previous studies established that rotavirus NSP1 antagonizes IFN signaling by inducing IRF3 degradation. In the present study, we have determined that, in comparison to wild-type rotaviruses, rotaviruses encoding defective NSP1 grow to lower titers in some cell lines and that this poor growth phenotype is due to their failure to suppress IFN expression. Furthermore, we provide evidence that rotaviruses encoding wild-type NSP1 subvert IFN signaling by inducing the degradation of not only IRF3, but also IRF7, with both events occurring through proteasome-dependent processes that proceed with similar efficiencies. The capacity of NSP1 to induce IRF7 degradation may allow rotavirus to move across the gut barrier by enabling the virus to replicate in specialized trafficking cells (dendritic cells and macrophages) that constitutively express IRF7. Along with IRF3 and IRF7, NSP1 was found to induce the degradation of IRF5, a factor that upregulates IFN expression and that is involved in triggering apoptosis during viral infection. Our analysis suggests that NSP1 mediates the degradation of IRF3, IRF5, and IRF7 by recognizing a common element of IRF proteins, thereby allowing NSP1 to act as a broad-spectrum antagonist of IRF function.  相似文献   

4.
5.
The Jagn1 protein was indentified in a SILAC proteomic screen of proteins that are increased in insulinoma cells expressing a folding-deficient proinsulin. Jagn1 mRNA was detected in primary rodent islets and in insulinoma cell lines and the levels were increased in response to ER stress. The function of Jagn1 was assessed in insulinoma cells by both knock-down and overexpression approaches. Knock-down of Jagn1 caused an increase in glucose-stimulated insulin secretion resulting from an increase in proinsulin biosynthesis. In contrast, overexpression of Jagn1 in insulinoma cells resulted in reduced cellular proinsulin and insulin levels. Our results identify a novel role for Jagn1 in regulating proinsulin biosynthesis in pancreatic β-cells. Under ER stress conditions Jagn1 is induced which might contribute to reducing proinsulin biosynthesis, in part by helping to relieve the protein folding load in the ER in an effort to restore ER homeostasis.  相似文献   

6.
7.
8.
9.
10.
11.
Substrate utilization tests with Biolog® plates were used to obtain information on shifts in community composition and on changes in the metabolic diversity and activity of microorganisms in soil polluted with hydrocarbons. and/or heavy metals. Differences between the patterns of substrate utilization of endogenous microorganisms of pristine and contaminated soils were investigated by multivariate analysis. Population changes and shifts in metabolic diversity were observed both after hydrocarbon pollution or heavy metal contamination. The overall activity on the 95 Biolog® Gram-negative (GN) substrates correlated well with the respiration rate of the soil. Soils contaminated with hydrocarbons showed higher metabolic potentials than the corresponding controls. In contrast, heavy metal pollution caused both lower metabolic activity and a loss in diversity. The Biolog® assay was found to be suitable to describe changes in functional diversity of soils caused by hydrocarbon contamination or heavy metal stress.  相似文献   

12.
The mucosal immune system identifies and fights invading pathogens, while allowing non-pathogenic organisms to persist. Mechanisms of pathogen/non-pathogen discrimination are poorly understood, as is the contribution of human genetic variation in disease susceptibility. We describe here a new, IRF3-dependent signaling pathway that is critical for distinguishing pathogens from normal flora at the mucosal barrier. Following uropathogenic E. coli infection, Irf3(-/-) mice showed a pathogen-specific increase in acute mortality, bacterial burden, abscess formation and renal damage compared to wild type mice. TLR4 signaling was initiated after ceramide release from glycosphingolipid receptors, through TRAM, CREB, Fos and Jun phosphorylation and p38 MAPK-dependent mechanisms, resulting in nuclear translocation of IRF3 and activation of IRF3/IFNβ-dependent antibacterial effector mechanisms. This TLR4/IRF3 pathway of pathogen discrimination was activated by ceramide and by P-fimbriated E. coli, which use ceramide-anchored glycosphingolipid receptors. Relevance of this pathway for human disease was supported by polymorphic IRF3 promoter sequences, differing between children with severe, symptomatic kidney infection and children who were asymptomatic bacterial carriers. IRF3 promoter activity was reduced by the disease-associated genotype, consistent with the pathology in Irf3(-/-) mice. Host susceptibility to common infections like UTI may thus be strongly influenced by single gene modifications affecting the innate immune response.  相似文献   

13.
IKK-i and TBK1 were recently identified as IKK-related kinases that are activated by toll-like receptors TLR3 and TLR4. These kinases were identified as essential components of the virus-activated as well as LPS-MyD88 independent kinase complex that phosphorylates IRF3 and results in the production of cytokines involved in innate immunity. Both IKK-i and TBK1 have also been implicated in the activation of the NFkappaB pathway but the precise mechanism is not clear. Although the literature to date suggests that IKK-i and TBK1 play redundant roles in TLR3 and TLR4 signaling, recent data suggest that there may be subtle differences in the signaling pathways affected by these kinases. We have generated tetracycline-inducible stable cell lines that express a wild type or kinase-inactive mutant form of IKK-i. Our data suggest that expression of IKK-i can activate both NFkappaB and IRF3, leading to the production of several cytokines including interferon beta. IKK-i most likely acts upstream of IKK2 to activate NFkappaB in these cells since expression of the kinase-inactive version of IKK-i did not inhibit TNFalpha mediated production of inflammatory cytokines. The data suggest that IKK-i is not involved in TNF-alpha mediated signaling but instead could likely play a role in activating IKK2 downstream of Toll-like receptor signaling. We also identified STAT1, Tyk2, and JAK1 as secondary mediators of IKK-i signaling as a result of interferon beta production in these cells.  相似文献   

14.
Neuronal lysosomes and their biogenesis mechanisms are primarily thought to clear metabolites and proteins whose abnormal accumulation leads to neurodegenerative disease pathology. However, it remains unknown whether lysosomal sorting mechanisms regulate the levels of membrane proteins within synaptic vesicles. Using high-resolution deconvolution microscopy, we identified early endosomal compartments where both selected synaptic vesicle and lysosomal membrane proteins coexist with the adaptor protein complex 3 (AP-3) in neuronal cells. From these early endosomes, both synaptic vesicle membrane proteins and characteristic AP-3 lysosomal cargoes can be similarly sorted to brain synaptic vesicles and PC12 synaptic-like microvesicles. Mouse knockouts for two Hermansky–Pudlak complexes involved in lysosomal biogenesis from early endosomes, the ubiquitous isoform of AP-3 (Ap3b1−/−) and muted, defective in the biogenesis of lysosome-related organelles complex 1 (BLOC-1), increased the content of characteristic synaptic vesicle proteins and known AP-3 lysosomal proteins in isolated synaptic vesicle fractions. These phenotypes contrast with those of the mouse knockout for the neuronal AP-3 isoform involved in synaptic vesicle biogenesis (Ap3b2−/−), in which the content of select proteins was reduced in synaptic vesicles. Our results demonstrate that lysosomal and lysosome-related organelle biogenesis mechanisms regulate steady-state synaptic vesicle protein composition from shared early endosomes.  相似文献   

15.
Dopamine neurotoxicity is associated with several neurodegenerative diseases, and neurons utilize several mechanisms, including uptake and metabolism, to protect them from injury. Metabolism of dopamine involves three enzymes: monoamine oxidase, catechol O-methyltransferase, and sulfotransferase. In primates but not lower order animals, a sulfotransferase (SULT1A3) is present that can rapidly metabolize dopamine to dopamine sulfate. Here, we show that SULT1A3 and a closely related protein SULT1A1 are highly inducible by dopamine. This involves activation of the D1 and NMDA receptors. Both ERK1/2 phosphorylation and calcineurin activation are required for induction. Pharmacological agents that inhibited induction or siRNA targeting SULT1A3 significantly increased the susceptibility of cells to dopamine toxicity. Taken together, these results show that dopamine can induce its own metabolism and protect neuron-like cells from damage, suggesting that SULT1A3 activity may be a risk factor for dopamine-dependent neurodegenerative diseases.  相似文献   

16.
Yang  Anshu  Bai  Jing  Xia  Jiaheng  Gong  Yuqing  Hui  Junyu  Wu  Zhihua  Li  Xin  Tong  Ping  Chen  Hongbing 《Food biophysics》2019,14(3):269-277
Food Biophysics - This study aimed to evaluate the effects of pH-shifting treatment combined with microbial transglutaminase (MTG)-mediated modification on the structure, digestibility, and...  相似文献   

17.
目的:观察不同浓度的fMLP诱导中性粒细胞的极性变化,并结合胞内游离钙离子浓度([Ca^2+]i)变化曲线分析不同时相细胞的极性化变化,探讨二者之间的关系。方法:使用激光共聚焦显微镜对胞内[Ca^2+].变化进行监测,细胞极性化情况通过倒置显微镜来分析。结果:胞内[Ca^2+]i变化主要包括静息期(0s)、快速上升期(10s)、快速下降期(150s)、慢速下降期(250s)和终末期等5个阶段,在这5个阶段的10s时细胞膜开始皱缩,启动细胞极性化过程,之后呈现为不断的极性化和去极性化过程。结论:游离钙离子浓度升高可能启动了中性粒细胞的极性化,但对之后的极性化过程影响不明显。  相似文献   

18.
19.
Changes in the cytosotic (soluble) and the non-cytosolic (particulate) isozyme composition of hexokinases and in their properties were studied by ion exchange chromatography on DEAE cellulose after the subcellular fractionation both in the healthy and the tobacco mosaic virus (TMV) infected tobacco leaves. Three main isozyme complexes were obtained: one particulate fraction (the particulate hexokinase phosphorylating both glucose and fructose, EC 2.7.1.1), and two soluble fractions (the soluble hexokinase phosphorylating both the glucose and the fructose, and the soluble fructokinase, which phosphorylates primarily fructose, EC 2.7.1.4). The total fructokinase activities were nearly twice higher than the total glucokinase activities (188.6 % of glucokinase activity in healthy plants and 181.3 % in infected plants). The total particulate glucokinase activity was increased to 120.6 % and the fructokinase to 118.9 % in TMV infected tissue when compared with healthy control. The similar pattern of activity was observed for soluble hexokinase isozymes - the sum of soluble glucokinase activity was increased to 175.4 % and of fructokinase activity to 131.2 % in TMV infected tissue. The isozymes isolated both from the healthy control and TMV-infected leaves had the similar elution profiles, displayed Michaelis-Menten kinetics, showed the identical profiles of pH optima and were Mg2+ dependent with the highest enzyme activity at equimolar Mg2+ and ATP concentration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The Yersinia pestis virulence factor YopJ is a potent inhibitor of the NF-kappaB and MAPK signalling pathways, however, its molecular mechanism and relevance to pathogenesis are the subject of much debate. In this report, we characterize the effects of this type III effector protein on bone fide signalling events downstream of Toll-like receptors (TLRs), critical sensors in innate immunity. YopJ inhibited TLR-mediated NF-kappaB and MAP kinase activation, as suggested by previous studies. In addition, induction of the TLR-mediated interferon response was blocked by YopJ, indicating that YopJ also inhibits IRF3 signalling. Examination of the NF-kappaB signalling pathway in detail suggested that YopJ acts at the level of TAK1 (MAP3K7) activation. Further studies revealed a YopJ-dependent decrease in the ubiquitination of TRAF3 and TRAF6. These data support the hypothesis that YopJ is a deubiquitinating protease that acts on TRAF proteins to prevent or remove the K63-polymerized ubiquitin conjugates required for signal transduction. Our data do not directly address the alternative hypothesis that YopJ is an acetyltransferase that acts on the activation loop of IKK and MKK proteins, but support the conclusion that the critical function of YopJ is to deubiquinate TRAF proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号