首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distance decay of similarity in ecological communities   总被引:11,自引:0,他引:11  
Biological similartiy typically decreases with geographical distance. Despite the recent attention to the distance decay relationship, there is no consensus on how the relationship varies across organism groups, geographic gradients and environments. We first conducted a quantitative meta-analysis of 401 distance decay relationships across a wide range of organisms, ecosystems and geographical gradients, and then united the effects of categorical and continuous variables on the rate of distance decay using a general linear model (GLM). As effect sizes we used the similarity at one km distance (initial similarity) and the distance that halves the similarity from its value at one km distance (halving distance). Both the initial similarity and halving distance were significantly affected by variables characterizing the spatial scale, organism properties, study region and ecosystem concerned. The patterns appear robust as the results of meta-analysis and GLM only differed in marginal details. According to GLM with Akaike's information criterion, the most parsimonious models explained 55.3 and 37.6% of variance in initial similarity and halving distance, respectively. Across large scales, similarity was decreasing slightly faster at high latitudes than at low latitudes, while small-scale turnover was higher at low latitudes. We also found significant differences in initial similarity among the realms, with terrestrial systems showing higher small-scale beta diversity. The decrease in community similarity at large scales was higher among organisms that are actively mobile than among passively dispersed organisms. We conclude that regression of similarity against distance unites several ecological phenomena such as dispersal propensity and environmental structuring, and provides an effective approach for gauging the spatial turnover across sites. We also found that the patterns in beta-diversity are highly scale-dependent.  相似文献   

2.
Genetic differentiations and phylogeographical patterns of small organisms may be shaped by spatial isolation, environmental gradients, and gene flow. However, knowledge about genetic differentiation of rotifers at the intercontinental scale is still limited. Polyarthra dolichoptera and P. vulgaris are cosmopolitan rotifers that are tolerant to environmental changes, offering an excellent model to address the research gap. Here, we investigated the populations in Southeastern China and eastern North America and evaluated the phylogeographical patterns from their geographical range sizes, geographic–genetic distance relationships and their responses to spatial‐environmental factors. Using the mitochondrial cytochrome c oxidase subunit I gene as the DNA marker, we analyzed a total of 170 individuals. Our results showed that some putative cryptic species, also known as entities were widely distributed, but most of them were limited to single areas. The divergence of P. dolichoptera and P. vulgaris indicated that gene flow between continents was limited while that within each continent was stronger. Oceanographic barriers do affect the phylogeographic pattern of rotifers in continental waters and serve to maintain genetic diversity in nature. The genetic distance of P. dolichoptera and P. vulgaris populations showed significant positive correlation with geographic distance. This might be due to the combined effects of habitat heterogeneity, long‐distance colonization, and oceanographic barriers. Furthermore, at the intercontinental scale, spatial distance had a stronger influence than environmental variables on the genetic differentiations of both populations. Wind‐ and animal‐mediated transport and even historical events of continental plate tectonics are potential factors for phylogeography of cosmopolitan rotifers.  相似文献   

3.
Environment and spatial processes are key factors in shaping species composition in a community. These two factors make competing predictions concerning the decay of species composition similarity with environmental divergence and geographic distance. Unfortunately, these can be difficult to test independently because changes in environment are commonly well correlated with geographic distance. However, an opportunity is provided by exploiting marked regional differences in the spatial structure of the environment. In this study, we test the predictions of environment filtering and dispersal in explaining species turnover using > 300 study sites spanning ?4000 km, across three major grasslands in China in which the environment is spatially structured to different degrees. We find that species composition similarity decayed with environmental divergence in the same way in all three regions, and even across biogeographic regions between which dispersal barriers are evident; in contrast, the decay of species composition similarity with geographic distance depended largely on the spatial structure of the environment. We conclude that, at the scale of study, environmental filtering rather than spatial processes best explains patterns of species turnover in China's grasslands.  相似文献   

4.
Aim We compare the distribution patterns of native and exotic freshwater fish in Europe, and test whether the same mechanisms (environmental filtering and/or dispersal limitation) govern patterns of decrease in similarity of native and exotic species composition over geographical distance (spatial species turnover). Locations Major river basins of Europe. Methods Data related to geography, habitat diversity, regional climate and species composition of native and exotic freshwater fish were collated for 26 major European river basins. We explored the degree of nestedness in native and exotic species composition, and quantified compositional similarity between river basins according to the beta‐sim (independent of richness gradient) and Jaccard (dependent of richness gradient) indices of similarity. Multiple regression on distance matrices and variation‐partitioning approaches were used to quantify the relative roles of environmental filtering and dispersal limitation in shaping patterns of decreasing compositional similarity over geographical distance. Results Native and exotic species exhibited significant nested patterns of species composition, indicating that differences in fish species composition between river basins are primarily the result of species loss, rather than species replacement. Both native and exotic compositional similarity decreased significantly with increasing geographical distance between river basins. However, gradual changes in species composition with geographical distance were found only for exotic species. In addition, exotic species displayed a higher rate of similarity decay (higher species turnover rate) with geographical distance, compared with native species. Lastly, the majority of explained variation in exotic compositional similarity was uniquely related to geography, whereas native compositional similarity was either uniquely explained by geography or jointly explained by environment and geography. Main conclusions Our study suggests that large‐scale patterns of spatial turnover for exotic freshwater fish in Europe are generated by human‐mediated dispersal limitation, whereas patterns of spatial turnover for native fish result from both dispersal limitation relative to historical events (isolation by mountain ranges, glacial history) and environmental filtering.  相似文献   

5.
Aim To distinguish the effects of geographic distance and environmental dissimilarity on global patterns of species turnover in four classes of terrestrial vertebrates (mammals, birds, reptiles and amphibians). Location Six hundred and sixty terrestrial ecoregions across the globe. Methods We calculated species turnover between each pair of ecoregions, using the Jaccard index (J). We selected seven variables to quantify environment in each ecoregion, and subjected the environmental values to a principal components analysis. For each realm, we applied multiple regression analysis relating the natural logarithm of the Jaccard index (lnJ) to geographic distance alone and in combination with differences in the environment variables measured as principal components (PC). We used partial correlations to partition variance in lnJ between unique contributions of distance and environmental PC scores, the covariation between distance and environment, and unexplained variance. To examine the latitude and species turnover relationship, we regressed lnJ on latitude with distance between ecoregions being included as a covariate. Results The natural logarithm of the Jaccard index (lnJ) decreased significantly with increasing geographic distance for all vertebrate classes in each zoogeographic realm, and the slopes of the relationships per 1000 km ranged from ?0.251 to ?1.043. With environmental differences included in the analysis, both geographic distance and environmental differences were substantial predictors of lnJ for every combination of taxon and realm. On average, the unique contribution of geographic distance to variation in species turnover between ecoregions was about 1.4 times that of the environmental differences between ecoregions. Species turnover generally decreased with increasing latitude when controlling for geographic distance. The value of lnJ for each vertebrate class was highly and positively correlated with those of the other vertebrate classes. Main conclusions Our analyses suggest that both dispersal‐based and niche‐based processes have played important roles in determining faunal similarities among vertebrate assemblages at the spatial scale examined. Furthermore, reptiles and amphibians exhibited greater distance‐independent faunal heterogeneity among ecoregions and greater turnover among ecoregions with respect to geographic and environmental distance than birds and mammals.  相似文献   

6.
Understanding the species diversity patterns along elevational gradients is critical for biodiversity conservation in mountainous regions. We examined the elevational patterns of species richness and turnover, and evaluated the effects of spatial and environmental factors on nonvolant small mammals (hereafter “small mammal”) predicted a priori by alternative hypotheses (mid‐domain effect [MDE], species–area relationship [SAR], energy, environmental stability, and habitat complexity]) proposed to explain the variation of diversity. We designed a standardized sampling scheme to trap small mammals at ten elevational bands across the entire elevational gradient on Yulong Mountain, southwest China. A total of 1,808 small mammals representing 23 species were trapped. We observed the hump‐shaped distribution pattern of the overall species richness along elevational gradient. Insectivores, rodents, large‐ranged species, and endemic species richness showed the general hump‐shaped pattern but peaked at different elevations, whereas the small‐ranged species and endemic species favored the decreasing richness pattern. The MDE and the energy hypothesis were supported, whereas little support was found for the SAR, the environmental stability hypothesis, and the habitat complexity. However, the primary driver(s) for richness patterns differed among the partitioning groups, with NDVI (the normalized difference vegetation index) and MDE being the most important variables for the total richness pattern. Species turnover for all small mammal groups increased with elevation, and it supported a decrease in community similarity with elevational distance. Our results emphasized for increased conservation efforts in the higher elevation regions of the Yulong Mountain.  相似文献   

7.
理解沿环境或空间梯度的群落组成变化(即beta多样性)一直是生态学和保护生物学的中心问题, 且beta多样性的形成机制及其对环境的响应已成为当前生物多样性研究的热点问题。本文以西藏横断山区怒江和澜沧江两个流域入江溪流中的细菌为研究对象, 使用Baselga的beta多样性分解方法, 基于Sørensen相异性指数将细菌的beta多样性分解为周转(turnover)和嵌套(nestedness)两个组分, 探究了细菌beta多样性及其分解组分随海拔距离的分布模式, 并且衡量了环境、气候和空间因子的相对重要性。结果表明, 两个流域中细菌的群落结构显著不同。两个流域的细菌总beta多样性和周转组分随海拔距离的增加而增加, 周转组分占总beta多样性的比例较大。气候和环境因子是两个流域中细菌总beta多样性及周转过程的重要预测因子, 并且所有的显著因子均为正相关, 其中环境因子中相关性最高的为海拔距离(R 2= 0.408, P < 0.001), 而气候因子中相关性最高的为年均温差(R 2= 0.417, P < 0.001)。方差分解结果暗示嵌套组分主要受空间扩散的影响; 总beta多样性和周转组分在环境较恶劣的澜沧江主要受环境过滤的影响, 而在环境较温和的怒江主要受空间扩散和环境过滤的共同影响。此外, 较为恶劣的环境条件会增加细菌的总beta多样性和周转率, 并且会形成更强的环境筛选作用去影响细菌群落的物种组成。我们的研究表明对西藏横断山区水体细菌多样性的保护需要从整个流域入手, 而非少量的生物多样性热点地区。  相似文献   

8.
Temporal patterns in communities have gained widespread attention recently, to the extent that temporal changes in community composition are now termed “temporal beta‐diversity.” Previous studies of beta‐diversity have made use of two classes of dissimilarity indices: incidence‐based (e.g., Sørensen and Jaccard dissimilarity) and abundance‐based (e.g., Bray–Curtis and Ružička dissimilarity). However, in the context of temporal beta‐diversity, the persistence of identical individuals and turnover among other individuals within the same species over time have not been considered, despite the fact that both will affect compositional changes in communities. To address this issue, I propose new index concepts for beta‐diversity and the relative speed of compositional shifts in relation to individual turnover based on individual identity information. Individual‐based beta‐diversity indices are novel dissimilarity indices that consider individual identity information to quantitatively evaluate temporal change in individual turnover and community composition. I applied these new indices to individually tracked tree monitoring data in deciduous and evergreen broad‐leaved forests across the Japanese archipelago with the objective of quantifying the effect of climate change trends (i.e., rates of change in both annual mean temperature and annual precipitation) on individual turnover and compositional shifts at each site. A new index explored the relative contributions of mortality and recruitment processes to temporal changes in community composition. Clear patterns emerged showing that an increase in the temperature change rate facilitated the relative contribution of mortality components. The relative speed of compositional shift increased with increasing temperature change rates in deciduous forests but decreased with increasing warming rates in evergreen forests. These new concepts provide a way to identify novel and high‐resolution temporal patterns in communities.  相似文献   

9.
β‐Diversity, which describes the extent of change in species composition in a given region, has become a core issue in ecology in recent years. However, it is hard to understand the underlying mechanisms of β‐diversity by using indices that yield identical values under species replacement and nestedness pattern. Partitioning β‐diversity into turnover (caused by species replacement among plots) and nestedness components (caused by species loss or gain among plots) may provide improved understanding of the variation in species composition. Here, we collected presence–absence data of 456 one‐tenth ha circular plots in the temperate forests of Northeastern China spanning a latitudinal range of 12° (41–53°N). We decomposed β‐diversity to assess the relative contribution of the turnover and nestedness components across latitudinal gradients. We used regression analysis to assess the relationship between spatial distance and β‐diversity. We applied variation partitioning to evaluate the importance of the measured environmental and spatial variables in explaining β‐diversity. We used the Tukey honest significant difference test to test the differences of β‐diversity along latitudinal gradients. Pearson correlations (r) and significance (p‐value) were computed using the Mantel tests to verify the relationship between distance and β‐diversity. The ANOVA test was used to verify whether the variation of β‐diversity explained by the environment and distance was significant. Our results showed that (1) β‐diversity and the turnover component were higher at low latitudes (zones A and B) than at high latitudes (zones C and D), while there was no relationship between the nestedness component and latitude. (2) The turnover component was dominant. (3) The spatial distance explained more variation of β‐diversity than the measured environmental factors. Therefore, we conclude that β‐diversity is mainly a product of species turnover in our temperate forests, suggesting that different localities harbor different species. We find that decomposing β‐diversity into the turnover and nestedness components is a useful approach to explore the variation of community composition and their causes.  相似文献   

10.
This paper aimed to explore the division of the southern and northern Hengduan Mountains based on gradients in species similarity and richness, and to analyze species richness in each sub-region. The Hengduan Mountain region was divided into nine latitudinal belts using one degree of latitude to define the belt after which distribution of seed plants within each latitudinal belt was recorded. Latitudinal patterns of species similarity were measured using the Jaccard similarity index for each pair of adjacent latitudinal belts. Non-metric multidimentional scaling (NMDS) was also used to analyze the similarity in species composition among the nine latitudinal belts. The latitudinal pattern of species similarity and the NMDS ordination both showed a great change in species composition across the 29°N latitudinal line, essentially dividing the Hengduan Mountain region into southern and northern sub-regions. Species richness, shown by the c-value of the species–area power function, and species–area ratio along a latitudinal gradient both showed a sharp decrease across the latitudinal belt from 29°0' to 29°59'N. The southern sub-region occupied 40% of the total area of the Hengduan Mountain region, but contained more than 80% of all the seed plants in the region. The higher species richness and endemism in the southern sub-region showed it to be the core of the Hengduan biodiversity hotspot, a result not unexpected because of the greater extremes of topography and wider diversity of habitats in the southern portion.  相似文献   

11.
We tested whether biogeographic patterns characteristic for biological communities can also apply to populations and investigated geographic patterns of variation in abundance of ectoparasites (fleas and mites) collected from bodies of their small mammalian hosts (rodents and shrews) in the Palearctic at continental, regional and local scales. We asked whether (i) there is a relationship between latitude and abundance and (ii) similarity in abundance follows a distance decay pattern or it is better explained by variation in extrinsic biotic and abiotic factors. We analysed the effect of latitude on mean intraspecific abundance using general linear models including proportional abundance of its principal host as an additional predictor variable. Then, we examined the relative effect of geographic distance, biotic and abiotic dissimilarities among regions, subregions or localities on the intraspecific dissimilarity in abundance among regions, subregions or localities using Generalized Dissimilarity Modelling. We found no relationship between latitude and intraspecific flea or mite abundance. In both taxa, environmental dissimilarity explained the largest part of the deviance of spatial variation in abundance, whereas the effect of the dissimilarity in the principal host abundance was of secondary importance and the effect of geographic distance was minor. These patterns were generally consistent across the three spatial scales, although environmental variation and dissimilarity in principal host abundance were equally important at the local scale in fleas but not in mites. We conclude that biogeographic patterns related to latitude and geographic distance do not apply to spatial variation of ectoparasite abundance. Instead, the geographic distribution of abundance in arthropod ectoparasites depends on their responses, mainly to the off-host environment and to a lesser extent the abundance of their principal hosts.  相似文献   

12.
Extensive distribution of widespread species and the loss of native species driven by anthropogenic disturbances modify community similarity, resulting in a decrease or increase in community distinctiveness. Data from four basins in the Wannan Mountains, China, were used to evaluate the effects of low‐head dams on patterns of fish faunal homogenization and differentiation based on abundance data. We aimed to examine the spatial changes in taxonomic and functional similarities of fish assemblages driven by low‐head dams and to examine whether the changes in the similarity of fish assemblages differed between taxonomic and functional components. We found that low‐head dams significantly decreased the mean taxonomic similarity but increased the mean functional similarity of fish assemblages in impoundments using abundance‐based approaches, suggesting that taxonomic differentiation accompanied functional homogenization in stream fish assemblages. These results show the importance of population abundance in structuring fish faunal homogenization and differentiation at small scales, especially when the major differences among assemblages are in species abundance ranks rather than species identities. Additionally, we also found only a weak positive correlation between changes in mean taxonomic and functional similarities, and partial pairs exhibited considerable variation in patterns of fish faunal homogenization and differentiation for taxonomic and functional components. In conclusion, this study highlighted that the observed taxonomic differentiation of current fish assemblages (short‐term phenomenon) is probably an early warning sign of further homogenization in regions where native species are completely predominated and that changes in taxonomic similarity cannot be used to predict changes in functional similarity.  相似文献   

13.
Studying patterns of population structure across the landscape sheds light on dispersal and demographic processes, which helps to inform conservation decisions. Here, we study how social organization and landscape factors affect spatial patterns of genetic differentiation in an ant species living in mountainous regions. Using genome‐wide SNP markers, we assess population structure in the Alpine silver ant, Formica selysi. This species has two social forms controlled by a supergene. The monogyne form has one queen per colony, while the polygyne form has multiple queens per colony. The two social forms co‐occur in the same populations. For both social forms, we found a strong pattern of isolation‐by‐distance across the Alps. Within regions, genetic differentiation between populations was weaker for the monogyne form than for the polygyne form. We suggest that this pattern is due to higher dispersal and effective population sizes in the monogyne form. In addition, we found stronger isolation‐by‐distance and lower genetic diversity in high elevation populations, compared to lowland populations, suggesting that gene flow between F. selysi populations in the Alps occurs mostly through riparian corridors along lowland valleys. Overall, this survey highlights the need to consider intraspecific polymorphisms when assessing population connectivity and calls for special attention to the conservation of lowland habitats in mountain regions.  相似文献   

14.
The purpose of many wildlife population studies is to estimate density, movement, or demographic parameters. Linking these parameters to covariates, such as habitat features, provides additional ecological insight and can be used to make predictions for management purposes. Line‐transect surveys, combined with distance sampling methods, are often used to estimate density at discrete points in time, whereas capture–recapture methods are used to estimate movement and other demographic parameters. Recently, open population spatial capture–recapture models have been developed, which simultaneously estimate density and demographic parameters, but have been made available only for data collected from a fixed array of detectors and have not incorporated the effects of habitat covariates. We developed a spatial capture–recapture model that can be applied to line‐transect survey data by modeling detection probability in a manner analogous to distance sampling. We extend this model to a) estimate demographic parameters using an open population framework and b) model variation in density and space use as a function of habitat covariates. The model is illustrated using simulated data and aerial line‐transect survey data for North Atlantic right whales in the southeastern United States, which also demonstrates the ability to integrate data from multiple survey platforms and accommodate differences between strata or demographic groups. When individuals detected from line‐transect surveys can be uniquely identified, our model can be used to simultaneously make inference on factors that influence spatial and temporal variation in density, movement, and population dynamics.  相似文献   

15.
  1. Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co‐occurring plant species.
  2. Using a Holarctic dataset of exposed‐feeding and shelter‐building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.
  3. Our plant–caterpillar network data derived from plot‐based samplings at three different continents included >28,000 individual caterpillar–plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.
  4. The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed‐feeding and shelter‐building caterpillars.
  5. Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host‐specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large‐scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
  相似文献   

16.
Allopatric or sympatric speciation influence the degree to which closely related species coexist in different manners, altering the patterns of phylogenetic structure and turnover among and between communities. The objective of this study was to examine whether phylogenetic community structure and turnover in the Brazilian Atlantic Forest permit conclusions about the dominant process for the formation of extant angiosperm richness of tree species. Therefore, we analyzed phylogenetic community structure (MPD, MNTD) as well as taxonomic (Jaccard similarity) and phylogenetic turnover (betaMPD, betaMNTD) among and between 49 tree communities distributed among three different habitat types. Mean annual precipitation and mean annual temperature in each survey area were estimated. Phylogenetic community structure does not differ between habitat types, although MPD reduces with mean annual temperature. Jaccard similarity decreases and betaMNTD increases with spatial distance and environmental differences between study sites. Spatial distance explains the largest portions of variance in the data, indicating dispersal limitation and the spatial aggregation of recently formed taxa, as betaMNTD is related to more recent evolutionary events. betaMPD, that is related to deep evolutionary splits, shows no spatial or environmental pattern, indicating that older clades are equally distributed across the Brazilian Atlantic Forest. While similarity pattern indicates dispersal limitations, the spatial turnover of betaMNTD is consistent with a high degree of sympatric speciation generating extant diversity and endemism in the Brazilian Atlantic Forest. More comprehensive approaches are necessary to reduce spatial sampling bias, uncertainties regarding angiosperm diversification patterns and confirm sympatric speciation as the dominant generator for the formation of extant species diversity in the Brazilian Atlantic Forest.  相似文献   

17.
For range‐restricted species with disjunct populations, it is critical to characterize population genetic structure, gene flow, and factors that influence functional connectivity among populations in order to design effective conservation programs. In this study, we genotyped 314 individuals from 16 extant populations of Ivesia webberi, a United States federally threatened Great Basin Desert using six microsatellite loci. We assessed the effects of Euclidean distance, landscape features, and ecological dissimilarity on the pairwise genetic distance of the sampled populations, while also testing for a potential relationship between Iwebberi genetic diversity and diversity in the vegetative communities. The results show low levels of genetic diversity overall (H e = 0.200–0.441; H o = 0.192–0.605) and high genetic differentiation among populations. Genetic diversity was structured along a geographic gradient, congruent with patterns of isolation by distance. Populations near the species’ range core have relatively high genetic diversity, supporting in part a central‐marginal pattern, while also showing some evidence for a metapopulation dynamic. Peripheral populations have lower genetic diversity, significantly higher genetic distances, and higher relatedness. Genotype cluster admixture results suggest a complex dispersal pattern among populations with dispersal direction and distance varying on the landscape. Pairwise genetic distance strongly correlates with elevation, actual evapotranspiration, and summer seasonal precipitation, indicating a role for isolation by environment, which the observed phenological mismatches among the populations also support. The significant correlation between pairwise genetic distance and floristic dissimilarity in the germinated soil seed bank suggests that annual regeneration in the plant communities contribute to the maintenance of genetic diversity in Iwebberi.  相似文献   

18.
The gut microbiome of animals, which serves important functions but can also contain potential pathogens, is to varying degrees under host genetic control. This can generate signals of phylosymbiosis, whereby gut microbiome composition matches host phylogenetic structure. However, the genetic mechanisms that generate phylosymbiosis and the scale at which they act remain unclear. Two non‐mutually exclusive hypotheses are that phylosymbiosis is driven by immunogenetic regions such as the major histocompatibility complex (MHC) controlling microbial composition, or by spatial structuring of neutral host genetic diversity via founder effects, genetic drift, or isolation by distance. Alternatively, associations between microbes and host phylogeny may be generated by their spatial autocorrelation across landscapes, rather than the direct effects of host genetics. In this study, we collected MHC, microsatellite, and gut microbiome data from separate individuals belonging to the Galápagos mockingbird species complex, which consists of four allopatrically distributed species. We applied multiple regression with distance matrices and Bayesian inference to test for correlations between average genetic and microbiome similarity across nine islands for which all three levels of data were available. Clustering of individuals by species was strongest when measured with microsatellite markers and weakest for gut microbiome distributions, with intermediate clustering of MHC allele frequencies. We found that while correlations between island‐averaged gut microbiome composition and both microsatellite and MHC dissimilarity existed across species, these relationships were greatly weakened when accounting for geographic distance. Overall, our study finds little support for large‐scale control of gut microbiome composition by neutral or adaptive genetic regions across closely related bird phylogenies, although this does not preclude the possibility that host genetics shapes gut microbiome at the individual level.  相似文献   

19.
Beta diversity, and its components of turnover and nestedness, reflects the processes governing community assembly, such as dispersal limitation or biotic interactions, but it is unclear how they operate at the local scale and how their role changes along postfire succession. Here, we analyzed the patterns of beta diversity and its components in a herbaceous plant community after fire, and in relation to dispersal ability, in Central Spain. We calculated multiple‐site beta diversity (βSOR) and its components of turnover (βSIM) and nestedness (βSNE) of all herbaceous plants, or grouped by dispersal syndrome (autochory, anemochory, and zoochory), during the first 3 years after wildfire. We evaluated the relationship between pairwise beta diversity (βsor), and its components (βsim, βsne), and spatial distance or differences in woody plant cover, a proxy of biotic interactions. We found high multiple‐site beta diversity dominated by the turnover component. Community dissimilarity increased with spatial distance, driven mostly by the turnover component. Species with less dispersal ability (i.e., autochory) showed a stronger spatial pattern of dissimilarity. Biotic interactions with woody plants contributed less to community dissimilarity, which tended to occur through the nestedness component. These results suggest that dispersal limitation prevails over biotic interactions with woody plants as a driver of local community assembly, even for species with high dispersal ability. These results contribute to our understanding of postfire community assembly and vegetation dynamics.  相似文献   

20.
Patterns of genetic differentiation within and among animal populations might vary due to the simple effect of distance or landscape features hindering gene flow. An assessment of how landscape connectivity affects gene flow can help guide management, especially in fragmented landscapes. Our objective was to analyze population genetic structure and landscape genetics of the native wild boar (Sus scrofa meridionalis) population inhabiting the island of Sardinia (Italy), and test for the existence of Isolation‐by‐Distance (IBD), Isolation‐by‐Barrier (IBB), and Isolation‐by‐Resistance (IBR). A total of 393 Sardinian wild boar samples were analyzed using a set of 16 microsatellite loci. Signals of genetic introgression from introduced non‐native wild boars or from domestic pigs were revealed by a Bayesian cluster analysis including 250 reference individuals belonging to European wild populations and domestic breeds. After removal of introgressed individuals, genetic structure in the population was investigated by different statistical approaches, supporting a partition into five discrete subpopulations, corresponding to five geographic areas on the island: north‐west (NW), central west (CW), south‐west (SW), north‐central east (NCE), and south‐east (SE). To test the IBD, IBB, and IBR hypotheses, we optimized resistance surfaces using genetic algorithms and linear mixed‐effects models with a maximum likelihood population effects parameterization. Landscape genetics analyses revealed that genetic discontinuities between subpopulations can be explained by landscape elements, suggesting that main roads, urban settings, and intensively cultivated areas are hampering gene flow (and thus individual movements) within the Sardinian wild boar population. Our results reveal how human‐transformed landscapes can affect genetic connectivity even in a large‐sized and highly mobile mammal such as the wild boar, and provide crucial information to manage the spread of pathogens, including the African Swine Fever virus, endemic in Sardinia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号