首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compartmentalization of cholesterol metabolism implies target-specific cholesterol trafficking between the endoplasmic reticulum, plasma membrane, lysosomes, mitochondria and peroxisomes. One hypothesis has been that sterol carrier protein-2 (SCP2, also known as the non-specific lipid transfer protein) acts in cholesterol transport through the cytoplasm. Recent studies employing gene targeting in mice showed, however, that mice lacking SCP2 and the related putative sterol carrier known as SCPx, develop a defect in peroxisomal beta-oxidation. In addition, diminished peroxisomal alpha-oxidation of phytanic acid (3,7,11, 15-tetramethylhexadecanoic acid) in these null mice was attributed to the absence of SCP2 which has a number of properties supporting a function as carrier for fatty acyl-CoAs rather than for sterols.  相似文献   

2.
3.
4.
The discovery of the sterol carrier and lipid transfer proteins was largely a result of the findings that cells contained cytosolic factors which were required either for the microsomal synthesis of cholesterol or which could accelerate the transfer or exchange of phospholipids between membrane preparations. There are two sterol carrier proteins present in rat liver cytosol. Sterol carrier protein 1 (SCP1) (Mr 47 000) participates in the microsomal conversion of squalene to lanosterol, and sterol carrier protein 2 (SCP2) (Mr 13 500) participates in the microsomal conversion of lanosterol to cholesterol. In addition SCP2 also markedly stimulates the esterification of cholesterol by rat liver microsomes, as well as the conversion of cholesterol to 7 alpha-hydroxycholesterol - the major regulatory step in bile acid formation. Also, SCP2 is required for the intracellular transfer of cholesterol from adrenal cytoplasmic lipid inclusion droplets to mitochondria for steroid hormone production, as well as cholesterol transfer from the outer to the inner mitochondrial membrane. SCP2 is identical to the non-specific phospholipid exchange protein. While SCP2 is capable of phospholipid exchange between artificial donors/acceptors, e.g. liposomes and microsomes, it does not enhance the release of lipids other than unesterified cholesterol from natural donors/acceptors, e.g. adrenal lipid inclusion droplets, and will not enhance exchange of labeled phosphatidylcholine between lipid droplets and mitochondria. Careful comparison of SCP2 and fatty acid binding protein (FABP) using six different assay procedures demonstrates separate and distinct physiological functions for each protein, with SCP2 participating in reactions involving sterols and FABP participating in reactions involving fatty acid binding and/or transport. Furthermore, there is no overlap in substrate specificities, i.e. FABP does not possess sterol carrier protein activity and SCP2 does not specifically bind or transport fatty acid. The results described in the present review support the concept that intracellular lipid transfer is a highly specific process, far more substrate-specific than suggested by the earlier studies conducted using liposomal techniques.  相似文献   

5.
Purified sterol carrier protein2 (SCP2) from rat liver stimulated utilization of endogenous cholesterol for pregnenolone synthesis by adrenal mitochondria. Cytosolic preparations of rat liver, adrenal and luteinized ovary were also stimulatory in mitochondrial pregnenolone synthesis to different extents. Treatment of all preparations with rabbit anti-rat SCP2 IgG neutralized the stimulatory effects, and immunoprecipitated proteins gave similar patterns on SDS-gradient polyacrylamide gel electrophoresis. Treatment with rabbit pre-immune IgG had no effect on these parameters. Thus, proteins which are immunochemically compatible with hepatic SCP2 appear to be present in steroidogenic tissues and may play a role in control of mitochondrial cholesterol side chain cleavage activity.  相似文献   

6.
Sterol carrier protein-2 (SCP-2) is a nonenzymatic protein of 13.5 kD which has been shown in in vitro experiments to be required for several stages in cholesterol utilization and biosynthesis. The subcellular localization of SCP-2 has not been definitively established. Using affinity-purified rabbit polyclonal antibodies against electrophoretically pure SCP-2 from rat liver, we demonstrate by immunoelectron microscopic labeling of ultrathin frozen sections of rat liver that the largest concentration of SCP-2 is inside peroxisomes. In addition the immunolabeling indicates that there are significant concentrations of SCP-2 inside mitochondria, and associated with the endoplasmic reticulum and the cytosol, but not inside the Golgi apparatus, lysosomes, or the nucleus. These results were confirmed by immunoblotting experiments with proteins from purified subcellular fractions of the rat liver cells carried out with the anti-SCP-2 antibodies. The large concentration of SCP-2 inside peroxisomes strongly supports the proposal that peroxisomes are critical sites of cholesterol utilization and biosynthesis. The presence of SCP-2 inside peroxisomes and mitochondria raises questions about the mechanisms involved in the differential targeting of SCP-2 to these organelles.  相似文献   

7.
Acute regulation of steroidogenesis in steroidogenic tissue is controlled by the transfer of cholesterol from the outer to the inner mitochondrial membrane where cleavage to produce pregnenolone occurs. Hormonal stimulation of MA-10 mouse Leydig tumor cells results in a large increase in steroidogenesis and the concomitant appearance of a series of 30-kDa proteins which have been localized to the mitochondria. In the present study we have shown that the appearance of these proteins occurs in a dose-responsive manner with both human chorionic gonadotropin and cyclic AMP analog. We have also shown that while steroidogenesis is inhibited rapidly in response to a cessation of protein synthesis, the 30-kDa mitochondrial proteins remain in the mitochondria, posing a potential dilemma for arguments favoring their role in the acute regulation of steroidogenesis. We report that the 30-kDa mitochondrial proteins arise from two precursor proteins with molecular masses of 37 and 32 kDa which are also found to be associated with the mitochondria. The use of pulse-chase experiments and the inhibitors ortho-phenanthroline and carbonyl cyanide m-chlorophenylhydrazone demonstrated the precursor-product relationship between the 37-, 32-, and 30-kDa proteins. We have also demonstrated that, as shown for a number of other mitochondrial proteins, the 30-kDa proteins are transferred to the inner mitochondrial membrane by a process requiring both proteolytic removal of the targeting sequences and an electrical potential across the inner mitochondrial membrane. We propose that during this transfer contact sites form between the two mitochondrial membranes and may offer an ideal situation for the transfer of cholesterol from the outer membrane to the inner membrane by an as yet unknown mechanism. Following transfer, the 30-kDa proteins remain in the inner membrane no longer able to function in the further transfer of cholesterol, and it is the continuing synthesis and processing of more precursor proteins which provides additional substrate for steroidogenesis.  相似文献   

8.
Sterol carrier protein-2 (SCP-2) is an intracellular protein of Mr 13,096. In vitro studies have shown that it is involved in the transport and metabolism of cholesterol. This protein is believed to participate in these activities by forming a stoichiometric complex with the sterol. Because these activities occur in different intracellular locations, i.e. mitochondria, peroxisomes, and cytosol, it can be predicted that SCP-2 targets to these sites. In this report we show that a mouse cDNA (785 base pairs) encodes a precursor form of SCP-2 containing a N-terminal presequence and an additional C-terminal residue. These additional amino acid residues are found in proteins targeted to the mitochondria and peroxisomes, respectively. These signals are not found in SCP-2 purified from rat liver cytosol which is believed to be a cytosolic form. Northern analysis shows that there are four species of mRNA which hybridize to a SCP-2-specific probe at 1.0, 1.7, 2.2, and 2.9 kilobases. Southern analysis shows that the gene is distributed over a large amount of DNA or that there are multiple genes. We have cloned the cytosolic/peroxisomal form of mouse SCP-2 into the Escherichia coli expression vector pKK233-2 and have expressed and purified recombinant mouse SCP-2, Mr 13,034. The purified recombinant SCP-2 is immunoreactive to rabbit anti-rat SCP-2 antibody. It also has biological activity equivalent to homogeneous rat liver SCP-2 in stimulating the microsomal conversion of 7-dehydrocholesterol to cholesterol and in the esterification of cholesterol by acyl-CoA cholesterol acyltransferase by rat liver microsomes.  相似文献   

9.
The transfer of cholesterol from the outer to the inner mitochondrial membrane is the rate-limiting step in hormone-induced steroid formation. To ensure that this step is achieved efficiently, free cholesterol must accumulate in excess at the outer mitochondrial membrane and then be transferred to the inner membrane. This is accomplished through a series of steps that involve various intracellular organelles, including lysosomes and lipid droplets, and proteins such as the translocator protein (18 kDa, TSPO) and steroidogenic acute regulatory (StAR) proteins. TSPO, previously known as the peripheral-type benzodiazepine receptor, is a high-affinity drug- and cholesterol-binding mitochondrial protein. StAR is a hormone-induced mitochondria-targeted protein that has been shown to initiate cholesterol transfer into mitochondria. Through the assistance of proteins such as the cAMP-dependent protein kinase regulatory subunit Iα (PKA-RIα) and the PKA-RIα- and TSPO-associated acyl-coenzyme A binding domain containing 3 (ACBD3) protein, PAP7, cholesterol is transferred to and docked at the outer mitochondrial membrane. The TSPO-dependent import of StAR into mitochondria, and the association of TSPO with the outer/inner mitochondrial membrane contact sites, drives the intramitochondrial cholesterol transfer and subsequent steroid formation. The focus of this review is on (i) the intracellular pathways and protein–protein interactions involved in cholesterol transport and steroid biosynthesis and (ii) the roles and interactions of these proteins in endocrine pathologies and neurological diseases where steroid synthesis plays a critical role.  相似文献   

10.
Addition of homogeneous rat liver sterol carrier protein2 (SCP2) or an adrenal cytosolic fraction enhanced pregnenolone production by adrenal mitochondria. Pretreatment of SCP2 or adrenal cytosol with anti-SCP2 IgG abolished the stimulatory effect of both preparations on mitochondrial pregnenolone output. Incubation of mitochondria with aminoglutethimide, which blocks interaction of cholesterol with inner membrane cytochrome P-450scc, resulted in decreased pregnenolone production and a decreased level of mitoplast cholesterol. Addition of SCP2 to the incubation media caused an almost 2-fold increase in cholesterol associated with the mitoplast, but did not enhance mitochondrial pregnenolone production. Studies with reconstituted cytochrome P-450scc in phospholipid vesicles also suggested that SCP2 did not affect interaction of cholesterol with the hemoprotein. Treatment of rats with cycloheximide alone or with adrenocorticotropic hormone resulted in a dramatic increase in mitochondrial cholesterol. However, these mitochondria did not exhibit increased levels of pregnenolone output under control incubation conditions. When SCP2 was included in the mitochondrial incubation media, pregnenolone production was significantly increased over that observed with adrenal mitochondria from untreated or adrenocorticotropic hormone-treated rats. The results imply that SCP2 enhances mitochondrial pregnenolone production by improving transfer of mitochondrial cholesterol to cytochrome P-450scc on the inner membrane, but does not directly influence the interaction of substrate with the hemoprotein.  相似文献   

11.
We recently described the atypical Rho GTPases Miro-1 and Miro-2. These proteins have tandem GTP-binding domains separated by a linker region with putative calcium-binding motives. In addition, the Miro GTPases have a C-terminal transmembrane domain, which confers targeting to the mitochondria. It was reported previously that a constitutively active mutant of Miro-1 induced a clustering of the mitochondria. This response can be separated into two distinct phenotypes: a formation of aggregated mitochondria and the appearance of thread-like mitochondria probably caused by defects in mitochondrial trafficking. The first GTPase domain is required for the clustering of the mitochondria, but the effect is not dependent on the EF-hands. Miro-2 only induces aggregation and not the formation of thread-like mitochondria. Moreover, we show that Miro interacts with the Kinesin-binding proteins, GRIF-1 and OIP106, suggesting that the Miro GTPases form a link between the mitochondria and the trafficking apparatus of the microtubules.  相似文献   

12.
Hormone-induced steroid biosynthesis begins with the transfer of cholesterol from intracellular stores into mitochondria. Steroidogenic acute regulatory protein (StAR) and peripheral-type benzodiazepine receptor (PBR) have been implicated in this rate-determining step of steroidogenesis. MA-10 mouse Leydig tumor cells were treated with and without oligodeoxynucleotides (ODNs) antisense to PBR and StAR followed by treatment with saturating concentrations of human choriogonadotropin. Treatment with ODNs antisense but not missense for both proteins inhibited the respective protein expression and the ability of the cells to synthesize steroids in response to human choriogonadotropin. Treatment of the cells with either ODNs antisense to PBR or a transducible peptide antagonist to PBR resulted in inhibition of the accumulation of the mature mitochondrial 30-kDa StAR protein, suggesting that the presence of PBR is required for StAR import into mitochondria. Addition of in vitro transcribed/translated 37-kDa StAR or a fusion protein of Tom20 (translocase of outer membrane) and StAR (Tom/StAR) to mitochondria isolated from control cells increased pregnenolone formation. Mitochondria isolated from cells treated with ODNs antisense, but not missense, to PBR failed to form pregnenolone and respond to either StAR or Tom/StAR proteins. Reincorporation of in vitro transcribed/translated PBR, but not PBR missing the cholesterol-binding domain, into MA-10 mitochondria rescued the ability of the mitochondria to form steroids and the ability of the mitochondria to respond to StAR and Tom/StAR proteins. These data suggest that both StAR and PBR proteins are indispensable elements of the steroidogenic machinery and function in a coordinated manner to transfer cholesterol into mitochondria.  相似文献   

13.
14.
Recent studies report mitochondrial carrier homolog 2 (MTCH2) as a novel and uncharacterized protein that acts as a receptor-like protein for the truncated BH3-interacting domain death agonist (tBID) protein in the outer membrane of mitochondria. These studies, using mouse embryonic stem cells and fibroblasts as well as mice with a conditional knockout of MTCH2 in the liver, showed that deletion of MTCH2 hindered recruitment of tBID to the mitochondria with subsequent reductions in the activation of pro-apoptotic proteins, mitochondrial outer membrane permeabilization and apoptosis. Sequence analysis shows that MTCH2 is present in all examined multicellular Metazoa as well as unicellular Choanoflagellata, and is a highly derived member of the mitochondrial carrier family. Mitochondrial carriers are monomeric transport proteins that are usually found in the inner mitochondrial membrane, where they exchange small substrates between the mitochondrial matrix and intermembrane space. There are extensive differences between the protein sequences of MTCH2 and other mitochondrial carriers that may explain the ability of MTCH2 to associate with tBID and thus its role in apoptosis. We review the experimental evidence for the role of MTCH2 in apoptosis and suggest that the original transport function of the ancestral MTCH2 mitochondrial carrier has been co-opted by the apoptotic machinery to provide a receptor and signaling mechanism.  相似文献   

15.
16.
Sterol carrier protein-2 (SCP2) is a small, 123 amino acid, protein postulated to play a role in intracellular transport and metabolism of lipids such as cholesterol, phospholipids, and branched chain fatty acids. While it is thought that interaction of SCP2 with membranes is necessary for lipid transfer, evidence for this possibility and identification of a membrane interaction domain within SCP2 has remained elusive. As shown herein with circular dichroism and a direct binding assay, SCP2 bound to small unilamellar vesicle (SUV) membranes to undergo significant alteration in secondary structure. The SCP2 amphipathic N-terminal 32 amino acids, comprised of two alpha-helical segments, were postulated to represent a putative phospholipid interaction site. This hypothesis was tested with a series of SCP2 N-terminal peptides, circular dichroism, and direct binding studies. The SCP2 N-terminal peptide (1-32)SCP2, primarily random coil in aqueous buffer, adopted alpha-helical structure upon interaction with membranes. The induction of alpha-helical structure in the peptide was maximal when the membranes contained a high mole percent of negatively charged phospholipid and of cholesterol. While deletion of the second alpha-helical segment within this peptide had no effect on formation of the first alpha-helix, it significantly weakened the peptide interaction with membranes. Substitution of Leu(20) with Glu(20) in the N-terminal peptide disrupted the alpha-helix structure and greatly weakened the peptide interaction with membranes. Finally, deletion of the first nine nonhelical amino acids had no effect either on formation of alpha-helix or on peptide binding to membranes. N-Terminal peptide (1-32)SCP2 competed with SCP2 for binding to SUV. These data were consistent with the N-terminus of SCP2 providing a membrane interaction domain that preferentially bound to membranes rich in anionic phospholipid and cholesterol.  相似文献   

17.
Mitochondrial dysfunction is an important intracellular lesion associated with a wide variety of diseases including neurodegenerative disorders. In addition to aging, oxidative stress and mitochondrial DNA mutations, recent studies have implicated a role for the mitochondrial accumulation of proteins such as plasma membrane associated amyloid precursor protein (APP) and cytosolic alpha synuclein in the pathogenesis of mitochondrial dysfunction in Alzheimer's disease (AD) and Parkinson's disease (PD), respectively. Both of these proteins contain cryptic mitochondrial targeting signals, which drive their transport across mitochondria. In general, mitochondrial entry of nuclear coded proteins is assisted by import receptors situated in both outer and inner mitochondrial membranes. A growing number of evidence suggests that APP and alpha synclein interact with import receptors to gain entry into mitochondrial compartment. Additionally, carboxy terminal cleaved product of APP, ~ 4 kDa Abeta, is also transported into mitochondria with the help of mitochondrial outer membrane import receptors. This review focuses on the mitochondrial targeting and accumulation of these two structurally different proteins and the mode of mechanism by which they affect the physiological functions of mitochondria.  相似文献   

18.
Aralar1 and citrin were identified as calcium binding aspartate/glutamate carriers (AGC) in mitochondria. The presence of calcium binding motifs facing the extramitochondrial space allows the regulation of the transport activity of these carriers by cytosolic calcium and provides a new mechanism to transduce calcium signals in mitochondria without the requirement of calcium entry in the organelle. We now report the complete characterization of a second subfamily of human calcium binding mitochondrial carriers named SCaMC (short calcium-binding mitochondrial carriers). We have identified three SCaMC genes in the human genome. All code for highly conserved proteins (about 70-80% identity), of about 500 amino acids with a characteristic mitochondrial carrier domain at the C terminus, and an N-terminal extension harboring four EF-hand binding motifs with high similarity to calmodulin. All SCaMC proteins were found to be located exclusively in mitochondria, and their N-terminal extensions were dispensable for the correct mitochondrial targeting of the polypeptides. SCaMC-1 is the human orthologue of the rabbit Efinal protein, which was reported to be located in peroxisomes, and SCaMC-2 is the human orthologue of the rat MCSC protein, described as up-regulated by dexamethasone in AR42J cells. One of the SCaMC genes, SCaMC-2, has four variants generated by alternative splicing, resulting in proteins with a common C terminus but with variations in their N-terminal halves, including the loss of one to three EF-hand motifs. These results make SCaMC one of most complex subfamilies of mitochondrial carriers and suggest that the large number of isoforms and splice variants may confer different calcium sensitivity to the transport activity of these carriers.  相似文献   

19.
The StAR-related lipid transfer (START) domain, first identified in the steroidogenic acute regulatory protein (StAR), is involved in the intracellular trafficking of lipids. Sixteen mammalian START domain-containing proteins have been identified to date. StAR, a protein targeted to mitochondria, stimulates the movement of cholesterol from the outer to the inner mitochondrial membranes, where it is metabolized into pregnenolone in steroidogenic cells. MLN64, the START domain protein most closely related to StAR, is localized to late endosomes along with other proteins involved in sterol trafficking, including NPC1 and NPC2, where it has been postulated to participate in sterol distribution to intracellular membranes. To investigate the role of MLN64 in sterol metabolism, we created mice with a targeted mutation in the Mln64 START domain, expecting to find a phenotype similar to that in humans and mice lacking NPC1 or NPC2 (progressive neurodegenerative symptoms, free cholesterol accumulation in lysosomes). Unexpectedly, mice homozygous for the Mln64 mutant allele were viable, neurologically intact, and fertile. No significant alterations in plasma lipid levels, liver lipid content and distribution, and expression of genes involved in sterol metabolism were observed, except for an increase in sterol ester storage in mutant mice fed a high fat diet. Embryonic fibroblast cells transfected with the cholesterol side-chain cleavage system and primary cultures of granulosa cells from Mln64 mutant mice showed defects in sterol trafficking as reflected in reduced conversion of endogenous cholesterol to steroid hormones. These observations suggest that the Mln64 START domain is largely dispensable for sterol metabolism in mice.  相似文献   

20.
The role of the NH(2)-terminus of cytochrome P450 2E1 (CYP2E1) in intracellular targeting was investigated. Two NH(2)-terminal CYP2E1 mutants, Delta(2-29)2E1, lacking the transmembrane domain, and N(++)2E1, having Ala2Lys and Val3Arg substitutions, were generated and expressed in the H2.35 mouse hepatoma cell line. In cells transfected with both constructs, a 40 kDa fragment of CYP2E1 (Delta2E1) was found to be localized to mitochondria as evidenced from immunofluorescence microscopy and subcellular fractionation studies. Delta2E1 was shown to be a soluble protein localized inside the mitochondria, displayed catalytic activity when reconstituted with adrenodoxin and adrenodoxin reductase, and was also present in mitochondria isolated from rat liver. It is concluded that in the absence of the hydrophobic NH(2)-terminal sequence, a putative mitochondrial import signal is exposed which targets CYP2E1 to this organelle where it is further processed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号