首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Patients with early-stage lung cancer who have a high baseline lymphocyte-to-monocyte ratio (LMR) have a favorable prognosis. However, the prognostic significance of LMR in patients with advanced-stage EGFR-mutant non-small cell lung cancer (NSCLC) receiving first-line epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) has not been established. We conducted a retrospective analysis to investigate the influence of LMR on clinical outcomes including progression-free survival (PFS) and overall survival (OS) in EGFR-mutant patients with NSCLC.

Materials and Methods

Of 1310 lung cancer patients diagnosed between January 2011 and October 2013, 253 patients receiving first-line EGFR-TKIs for EGFR-mutant NSCLC were included. The cut-off values for baseline and the 1-month-to-baseline ratio of LMR (MBR), determined by using receiver operating characteristic curves, were 3.29 and 0.63, respectively. Patients were divided into 3 prognostic groups: high LMR and MBR, high LMR or MBR, and low LMR and MBR.

Results

The mean patient age was 65.2 years, and 41% were men. The median PFS and OS were 10.3 and 22.0 months, respectively. The PFS in patients with high LMR and MBR, high LMR or MBR, and low LMR and MBR were 15.4, 7.1, and 2.0 months, respectively (p < 0.001), whereas the OS were 32.6, 13.7, and 5.1 months, respectively (p < 0.001).

Conclusion

A combination of baseline and trend of LMR can be used to identify patients with a high mortality risk in EGFR-mutant NSCLC patients receiving first-line EGFR-TKIs.  相似文献   

2.

Aims

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown dramatic clinical benefits in advanced non-small cell lung cancer (NSCLC); however, resistance remains a serious problem in clinical practice. The present study analyzed mTOR-associated signaling-pathway differences between the EGFR TKI-sensitive and -resistant NSCLC cell lines and investigated the feasibility of targeting mTOR with specific mTOR inhibitor in EGFR TKI resistant NSCLC cells.

Methods

We selected four different types of EGFR TKI-sensitive and -resistant NSCLC cells: PC9, PC9GR, H1650 and H1975 cells as models to detect mTOR-associated signaling-pathway differences by western blot and Immunoprecipitation and evaluated the antiproliferative effect and cell cycle arrest of ku-0063794 by MTT method and flow cytometry.

Results

In the present study, we observed that mTORC2-associated Akt ser473-FOXO1 signaling pathway in a basal state was highly activated in resistant cells. In vitro mTORC1 and mTORC2 kinase activities assays showed that EGFR TKI-resistant NSCLC cell lines had higher mTORC2 kinase activity, whereas sensitive cells had higher mTORC1 kinase activity in the basal state. The ATP-competitive mTOR inhibitor ku-0063794 showed dramatic antiproliferative effects and G1-cell cycle arrest in both sensitive and resistant cells. Ku-0063794 at the IC50 concentration effectively inhibited both mTOR and p70S6K phosphorylation levels; the latter is an mTORC1 substrate and did not upregulate Akt ser473 phosphorylation which would be induced by rapamycin and resulted in partial inhibition of FOXO1 phosphorylation. We also observed that EGFR TKI-sensitive and -resistant clinical NSCLC tumor specimens had higher total and phosphorylated p70S6K expression levels.

Conclusion

Our results indicate mTORC2-associated signaling-pathway was hyperactivated in EGFR TKI-resistant cells and targeting mTOR with specific mTOR inhibitors is likely a good strategy for patients with EGFR mutant NSCLC who develop EGFR TKI resistance; the potential specific roles of mTORC2 in EGFR TKI-resistant NSCLC cells were still unknown and should be further investigated.  相似文献   

3.

Introduction

Treatment with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been associated with favorable progression free survival (PFS) in patients with non-small cell lung cancers (NSCLC) harboring EGFR mutations. However, a subset of this population doesn''t respond to EGFR-TKI treatment. Therefore, the present study aimed to elucidate survival outcome in NSCLC EGFR-mutant patients who were treated with EGFR TKIs.

Methods

Among the 580 consecutive NSCLC patients who were treated at our facility between 2008 and 2012, a total of 124 treatment-naïve, advanced NSCLC, EGFR-mutant patients treated with EGFR TKIs were identified and grouped into non-responders and responders for analyses.

Results

Of 124 patients, 104 (84%) responded to treatment, and 20 (16%) did not; and the overall median PFS was 9.0 months. Notably, the PFS, overall survival (OS) and survival rates were significantly unfavorable in non-responders (1.8 vs. 10.3 months, hazard ratio (HR) = 29.2, 95% confidence interval (CI), 13.48–63.26, P<0.0001; 9.4 vs. 17.3 months, HR = 2.74, 95% CI, 1.52–4.94, P = 0.0008; and 58% vs. 82% in 6, 37% vs. 60% in 12, and 19 vs. 40% at 24 months, respectively). In multivariate analysis, treatment efficacy strongly affected PFS and OS, independent of covariates (HR = 47.22, 95% CI, 17.88–124.73, P<0.001 and HR = 2.74, 95% CI, 1.43–5.24, P = 0.002, respectively). However, none of the covariates except of the presence of EGFR exon 19 deletion in the tumors was significantly associated with better treatment efficacy.

Conclusions

A subset of NSCLC EGFR-mutant patients displayed unfavorable survival despite EGFR TKI administration. This observation reinforces the urgent need for biomarkers effectively predicting the non-responders and for drug development overcoming primary resistance to EGFR TKIs. In addition, optimal therapeutic strategies to prolong the survival of non-responders need to be investigated.  相似文献   

4.
OBJECTIVE: It is important to analyze and track Epidermal Growth Factor Receptor (EGFR) mutation status for predicting efficacy and monitoring resistance throughout EGFR-tyrosine kinase inhibitors (TKIs) treatment in non-small cell lung cancer (NSCLC) patients. The objective of this study was to determine the feasibility and predictive utility of EGFR mutation detection in peripheral blood. METHODS: Plasma, serum and tumor tissue samples from 164 NSCLC patients were assessed for EGFR mutations using Amplification Refractory Mutation System (ARMS). RESULTS: Compared with matched tumor tissue, the concordance rate of EGFR mutation status in plasma and serum was 73.6% and 66.3%, respectively. ARMS for EGFR mutation detection in blood showed low sensitivity (plasma, 48.2%; serum, 39.6%) but high specificity (plasma, 95.4%; serum, 95.5%). Treated with EGFR-TKIs, patients with EGFR mutations in blood had significantly higher objective response rate (ORR) and insignificantly longer progression-free survival (PFS) than those without mutations (ORR: plasma, 68.4% versus 38.9%, P = 0.037; serum, 75.0% versus 39.5%, P = 0.017; PFS: plasma, 7.9 months versus 6.1 months, P = 0.953; serum, 7.9 months versus 5.7 months, P = 0.889). In patients with mutant tumors, those without EGFR mutations in blood tended to have prolonged PFS than patients with mutations (19.7 months versus 11.0 months, P = 0.102). CONCLUSIONS: EGFR mutations detected in blood may be highly predictive of identical mutations in corresponding tumor, as well as showing correlations with tumor response and survival benefit from EGFR-TKIs. Therefore, blood for EGFR mutation detection may allow NSCLC patients with unavailable or insufficient tumor tissue the opportunity to benefit from personalized treatment. However, due to the high false negative rate in blood samples, analysis for EGFR mutations in tumor tissue remains the gold standard.  相似文献   

5.
Aberrant activation of the hedgehog (Hh) signaling pathway has been implicated in the epithelial-to-mesenchymal transition (EMT) and cancer stem-like cell (CSC) maintenance; both processes can result in tumor progression and treatment resistance in several types of human cancer. Hh cooperates with the epidermal growth factor receptor (EGFR) signaling pathway in embryogenesis. We found that the Hh signaling pathway was silenced in EGFR-TKI-sensitive non-small-cell lung cancer (NSCLC) cells, while it was inappropriately activated in EGFR-TKI-resistant NSCLC cells, accompanied by EMT induction and ABCG2 overexpression. Upregulation of Hh signaling through extrinsic SHH exposure downregulated E-cadherin expression and elevated Snail and ABCG2 expression, resulting in gefitinib tolerance (P < 0.001) in EGFR-TKI-sensitive cells. Blockade of the Hh signaling pathway using the SMO antagonist SANT-1 restored E-cadherin expression and downregulate Snail and ABCG2 in EGFR-TKI-resistant cells. A combination of SANT-1 and gefitinib markedly inhibited tumorigenesis and proliferation in EGFR-TKI-resistant cells (P < 0.001). These findings indicate that hyperactivity of Hh signaling resulted in EGFR-TKI resistance, by EMT introduction and ABCG2 upregulation, and blockade of Hh signaling synergistically increased sensitivity to EGFR-TKIs in primary and secondary resistant NSCLC cells. E-cadherin expression may be a potential biomarker of the suitability of the combined application of an Hh inhibitor and EGFR-TKIs in EGFR-TKI-resistant NSCLCs.  相似文献   

6.
肺癌EGFR突变与酪氨酸激酶抑制剂临床敏感性的关系   总被引:1,自引:0,他引:1  
王俊  郭燕  陈正堂 《生命的化学》2006,26(5):443-445
表皮生长因子受体(EGFR)酪氨酸激酶抑制剂(TKI)是近年来在临床中使用的一类新的小分子靶向药物,主要用于晚期非小细胞肺癌(NSCLC)的治疗,然而并非所有的NSCLC患者对TKI敏感。近期研究发现,在NSCLC治疗过程中,EGFR突变与TKI临床敏感性密切相关,通过检测肺癌EGFR突变状况可以预测TKI治疗的效果。  相似文献   

7.
Epithelial-mesenchymal transition (EMT) is one mechanism of acquired resistance to inhibitors of the epidermal growth factor receptor-tyrosine kinases (EGFR-TKIs) in non-small cell lung cancer (NSCLC). The precise mechanisms of EMT-related acquired resistance to EGFR-TKIs in NSCLC remain unclear. We generated erlotinib-resistant HCC4006 cells (HCC4006ER) by chronic exposure of EGFR-mutant HCC4006 cells to increasing concentrations of erlotinib. HCC4006ER cells acquired an EMT phenotype and activation of the TGF-β/SMAD pathway, while lacking both T790M secondary EGFR mutation and MET gene amplification. We employed gene expression microarrays in HCC4006 and HCC4006ER cells to better understand the mechanism of acquired EGFR-TKI resistance with EMT. At the mRNA level, ZEB1 (TCF8), a known regulator of EMT, was >20-fold higher in HCC4006ER cells than in HCC4006 cells, and increased ZEB1 protein level was also detected. Furthermore, numerous ZEB1 responsive genes, such as CDH1 (E-cadherin), ST14, and vimentin, were coordinately regulated along with increased ZEB1 in HCC4006ER cells. We also identified ZEB1 overexpression and an EMT phenotype in several NSCLC cells and human NSCLC samples with acquired EGFR-TKI resistance. Short-interfering RNA against ZEB1 reversed the EMT phenotype and, importantly, restored erlotinib sensitivity in HCC4006ER cells. The level of micro-RNA-200c, which can negatively regulate ZEB1, was significantly reduced in HCC4006ER cells. Our results suggest that increased ZEB1 can drive EMT-related acquired resistance to EGFR-TKIs in NSCLC. Attempts should be made to explore targeting ZEB1 to resensitize TKI-resistant tumors.  相似文献   

8.
ObjectivesThis purpose of this study was to examine clinical-pathologic factors – particularly smoking and brain metastases – in EGFR mutation positive (M+) lung adenocarcinoma (ADC) to determine their impact on survival in patients treated with first line EGFR TKI.MethodsA retrospective review of EGFR mutation reflex testing experience for all ADC diagnosed at a tertiary Asian cancer centre from January 2009 to April 2013. Amongst this cohort, patients with advanced EGFR M+ ADC treated with first line EGFR TKI were identified to determine factors that influence progression free and overall survival.Results444/742 (59.8%) ADC reflex tested for EGFR mutations were EGFR M+. Amongst never-smokers (n=468), EGFR M+ were found in 74.5% of females and 76.3% of males, and amongst ever smokers (n=283), in 53.3% of females and 35.6% of males. Exon 20 mutations were found more commonly amongst heavy smokers (> 50 pack years and > 20 pack years, Pearson’s chi square p=0.044, and p=0.038 respectively). 211 patients treated with palliative first line TKI had a median PFS and OS of 9.2 and 19.6 months respectively. 26% of patients had brain metastasis at diagnosis. This was significantly detrimental to overall survival (HR 1.85, CI 1.09-3.16, p=0.024) on multivariate analysis. There was no evidence that smoking status had a significant impact on survival.ConclusionsThe high prevalence of EGFR M+ in our patient population warrants reflex testing regardless of gender and smoking status. Smoking status and dosage did not impact progression free or overall survival in patients treated with first line EGFR TKI. The presence of brain metastasis at diagnosis negatively impacts overall survival.  相似文献   

9.
OBJECTIVES: To predict epidermal growth factor receptor (EGFR) mutation status using quantitative radiomic biomarkers and representative clinical variables. METHODS: The study included 180 patients diagnosed as of non-small cell lung cancer (NSCLC) with their pre-therapy computed tomography (CT) scans. Using a radiomic method, 485 features that reflect the heterogeneity and phenotype of tumors were extracted. Afterwards, these radiomic features were used for predicting epidermal growth factor receptor (EGFR) mutation status by a least absolute shrinkage and selection operator (LASSO) based on multivariable logistic regression. As a result, we found that radiomic features have prognostic ability in EGFR mutation status prediction. In addition, we used radiomic nomogram and calibration curve to test the performance of the model. RESULTS: Multivariate analysis revealed that the radiomic features had the potential to build a prediction model for EGFR mutation. The area under the receiver operating characteristic curve (AUC) for the training cohort was 0.8618, and the AUC for the validation cohort was 0.8725, which were superior to prediction model that used clinical variables alone. CONCLUSION: Radiomic features are better predictors of EGFR mutation status than conventional semantic CT image features or clinical variables to help doctors to decide who need EGFR tyrosine kinase inhibitor (TKI) treatment.  相似文献   

10.
PURPOSE: Patients with non-small cell lung cancer (NSCLC) and epidermal growth factor receptor (EGFR)-mutations have excellent response to EGFR tyrosine kinase inhibitors (TKIs), and exon 20 mutation accounts for most of TKI drug resistance. Nested polymerase chain reaction (PCR) was used to detect EGFR exon 20 mutations of patients with NSCLC after chemotherapy. The same is being analyzed with patients' characteristics. METHODS: Peripheral blood samples were collected from 273 patients with NSCLC, including 143 with adenocarcinoma (ADC) and 130 with squamous cell carcinoma (SCC), after chemotherapy. DNA was extracted from whole blood for nested PCR amplification and purification. Sequencing was carried out in an automated 3730 sequencer, followed by analysis of EGFR exon 20 mutations from nested PCR products. RESULTS: The mutations of EGFR exon 20 were mainly point mutations in rs1050171 (c.2361A>G) and rs56183713 (c.2457G>A). The point mutation was 28.21%, 28.46%, and 27.97% in patients with NSCLC, ADC and SCC, respectively. Men had an equivalent mutation (27.18%) to women (30.77%). The mutation in smokers and nonsmokers was 27.68% and 29.17%, respectively. In unselected patients, there was no correlation between EGFR exon 20 mutations and patients' characteristics of age, gender, smoking history, histologic type, or tumor-node-metastasis (TNM) staging system. In subgroup analyses, the EGFR mutation of patients with SCC was correlated with TNM stage [P = .013; odds ratio = 1.758; 95% confidence interval (CI) = 1.125-2.747]. CONCLUSIONS: The data indicate that the chemotherapy may induce EGFR-TKI-resistant mutation in NSCLC cells and EGFR-TKI should be used in the early stage of NSCLC but not after chemotherapy.  相似文献   

11.

Purpose

To identify stage I lung adenocarcinoma patients with a poor prognosis who will benefit from adjuvant therapy.

Patients and Methods

Whole gene expression profiles were obtained at 19 time points over a 48-hour time course from human primary lung epithelial cells that were stimulated with epidermal growth factor (EGF) in the presence or absence of a clinically used EGF receptor tyrosine kinase (RTK)-specific inhibitor, gefitinib. The data were subjected to a mathematical simulation using the State Space Model (SSM). “Gefitinib-sensitive” genes, the expressional dynamics of which were altered by addition of gefitinib, were identified. A risk scoring model was constructed to classify high- or low-risk patients based on expression signatures of 139 gefitinib-sensitive genes in lung cancer using a training data set of 253 lung adenocarcinomas of North American cohort. The predictive ability of the risk scoring model was examined in independent cohorts of surgical specimens of lung cancer.

Results

The risk scoring model enabled the identification of high-risk stage IA and IB cases in another North American cohort for overall survival (OS) with a hazard ratio (HR) of 7.16 (P = 0.029) and 3.26 (P = 0.0072), respectively. It also enabled the identification of high-risk stage I cases without bronchioalveolar carcinoma (BAC) histology in a Japanese cohort for OS and recurrence-free survival (RFS) with HRs of 8.79 (P = 0.001) and 3.72 (P = 0.0049), respectively.

Conclusion

The set of 139 gefitinib-sensitive genes includes many genes known to be involved in biological aspects of cancer phenotypes, but not known to be involved in EGF signaling. The present result strongly re-emphasizes that EGF signaling status in cancer cells underlies an aggressive phenotype of cancer cells, which is useful for the selection of early-stage lung adenocarcinoma patients with a poor prognosis.

Trial Registration

The Gene Expression Omnibus (GEO) GSE31210  相似文献   

12.
Alterations of Eph receptor tyrosine kinases are frequent events in human cancers. Genetic variations of EPHB6 have been described but the functional outcome of these alterations is unknown. The current study was conducted to screen for the occurrence and to identify functional consequences of EPHB6 mutations in non-small cell lung cancer. Here, we sequenced the entire coding region of EPHB6 in 80 non-small cell lung cancer patients and 3 tumor cell lines. Three potentially relevant mutations were identified in primary patient samples of NSCLC patients (3.8%). Two point mutations led to instable proteins. An in frame deletion mutation (del915-917) showed enhanced migration and accelerated wound healing in vitro. Furthermore, the del915-917 mutation increased the metastatic capability of NSCLC cells in an in vivo mouse model. Our results suggest that EPHB6 mutations promote metastasis in a subset of patients with non-small cell lung cancer.  相似文献   

13.

Background

The prognostic value of epidermal growth factor receptor (EGFR) mutations in resected non-small cell lung cancer (NSCLC) remains controversial. We performed a systematic review with meta-analysis to assess its role.

Methods

Studies were identified via an electronic search on PubMed, Embase and Cochrane Library databases. Pooled hazard ratio (HR) for disease-free survival (DFS) and overall survival (OS) were calculated for meta-analysis.

Results

There were 16 evaluated studies (n = 3337) in the meta-analysis. The combined HR evaluating EGFR mutations on disease free survival was 0.96 (95% CI [0.79–1.16] P = 0.65). The combined HR evaluating EGFR mutations on overall survival was 0.86 (95% CI [0.72–1.04] P = 0.12). The subgroup analysis based on univariate and multivariate analyses in DFS and OS showed no statistically significant difference. There was also no statistically significant difference in DFS and OS of stage I NSCLC patients.

Conclusion

The systematic review with meta-analysis showed that EGFR mutations were not a prognostic factor in patients with surgically resected non-small cell lung cancer. Well designed prospective study is needed to confirm the result.  相似文献   

14.

Objective

The aim of the present meta-analysis is to evaluate the response rate, median survival time (MST) and toxicity in patients with brain metastases (BM) originating from non-small cell lung cancer (NSCLC) and who were treated using either whole brain radiotherapy (WBRT) plus concurrent chemotherapy or WBRT alone.

Methods

PubMed, EMBASE, Web of Science, The Cochrane Library, clinical trials and current controlled trials were searched to identify any relevant publications. After screening the literature and undertaking quality assessment and data extraction, the meta-analysis was performed using Stata11.0 software.

Results

In total, six randomized controlled trials (RCT) involving 910 participants were included in the meta-analysis. The results of the analysis indicate that WBRT plus concurrent chemotherapy was more effective at improving response rate (RR = 2.06, 95% CI [1.13, 3.77]; P = 0.019) than WBRT alone. However, WBRT plus concurrent chemotherapy did not improve median survival time (MST) (HR = 1.09, 95%CI [0.94, 1.26]; P = 0.233) or time of neurological progression (CNS-TTP) (HR = 0.93, 95%CI [0.75, 1.16]; P = 0.543), and increased adverse events (Grade≥3) (RR = 2.59, 95% CI [1.88, 3.58]; P = 0.000). There were no significant differences in Grade 3–5 neurological or hematological toxicity between two patient groups (RR = 1.08, 95%CI [0.23, 5.1]; P = 0.92).

Conclusion

The combination of chemotherapy plus WBRT in patients with BM originating from NSCLC may increase treatment response rates of brain metastases with limited toxicity. Although the therapy schedule did not prolong MST or CNS-TTP, further assessment is warranted.  相似文献   

15.

Introduction

Amplification of the fibroblast growth factor receptor 1 (FGFR1) gene has been described in tumors of non-small-cell lung cancer (NSCLC) patients. Prior reports showed conflicting rates of amplification frequency and clinical relevance.

Materials and Methods

We developed a reliable real-time quantitative PCR assay to assess the frequency of FGFR1 amplification and assessed the optimal cutoff level of amplification for clinical application.

Results

In a training cohort of 203 NSCLCs, we established that a 3.5-fold amplification optimally divided patients into groups with different survival rates with a clear threshold level. Those with FGFR1 amplification levels above 3.5-fold had an inferior survival. These data were confirmed in a validation cohort of 142 NSCLC. After adjusting for age, sex, performance status, stage, and histology, patients with FGFR1 amplification levels above 3.5 fold had a hazard ratio of 2.91 (95% CI- 1.14, 7.41; pvalue-0.025) for death in the validation cohort. The rates of FGFR1 amplification using the cutoff level of 3.5 were 5.1% in squamous cell and 4.1% in adenocarcinomas. There was a non-significant trend towards higher amplifications rates in heavy smokers (> 15 pack-years of cigarette consumption) as compared to light smokers.

Discussion

Our data suggest that a 3.5-fold amplification of FGFR1 is of clinical importance in NSCLC. Our cutpoint analysis showed a clear threshold effect for the impact of FGFR1 amplification on patients’ survival, which can be used as an initial guide for patient selection in trials assessing efficacy of novel FGFR inhibitors.  相似文献   

16.

Background

Since efficacy and safety of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) versus chemotherapy in the treatment of patients with pretreated advanced non-small cell lung cancer (NSCLC) remain controversial, we performed a meta-analysis to compare them.

Methods

An internet search of several databases was performed, including PubMed, Embase, and the Cochrane database. Randomized trials that compared an EGFR-TKI with chemotherapy in the second-line setting were included. The outcomes were progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and grade 3–4 toxicities. The PFS, OS for the EGFR mutation-positive (EGFR M+) and EGFR mutation-negative (EGFR M) subgroups were pooled. The pooled hazard ratios (HRs) and odds ratios (ORs) with their corresponding confidence intervals (CIs) were calculated on the STATA software.

Results

Our meta-analysis combined 3,825 patients from 10 randomized trials. Overall, EGFR-TKIs and second-line chemotherapy have equivalent efficacy in terms of PFS (HR, 1.03; 95%CI, 0.87–1.21; P = 0.73; I2 = 78.7%, Pheterogeneity<0.001), OS (HR, 1.00; 95%CI, 0.92–1.08; P = 0.90; I2 = 0.0%, Pheterogeneity = 0.88), and ORR (OR, 1.34; 95%CI, 0.86–2.08; P = 0.20; I2 = 73.1%, Pheterogeneity<0.001). However, subgroup analysis based on EGFR mutation status showed that second-line chemotherapy significantly improved PFS (HR, 1.35; 95%CI, 1.09–1.66; P = 0.01; I2 = 55.7%, Pheterogeneity = 0.046) for EGFR M patients, whereas OS was equal (HR, 0.96; 95%CI, 0.77–1.19; P = 0.69; I2 = 0.0%, Pheterogeneity = 0.43); EGFR-TKIs significantly improved PFS (HR, 0.28; 95%CI, 0.15–0.53; P<0.001; I2 = 4.1%, Pheterogeneity = 0.35) for EGFR M+ patients, whereas OS was equal (HR, 0.86; 95%CI, 0.44–1.68; P = 0.65; I2 = 0.0%, Pheterogeneity = 0.77). Compared with chemotherapy, EGFR-TKIs led to more grade 3–4 rash, but less fatigue/asthenia disorder, leukopenia and thrombocytopenia.

Conclusions

Our analysis suggests that chemotherapy in the second-line setting can prolong PFS in EGFR M patients, whereas it has no impact on OS. EGFR-TKIs seem superior over chemotherapy as second-line therapy for EGFR M+ patients. Our findings support obtaining information on EGFR mutational status before initiation of second-line treatment.  相似文献   

17.

Background

Various studies have assessed the diagnostic accuracy of EGFR mutation-specific antibodies in non-small cell lung cancer (NSCLC). We performed a meta-analysis of existing data to investigate the diagnostic value of mutation-specific antibodies for detection of EGFR mutations in NSCLC.

Methods

We systematically retrieved relevant studies from PubMed, Web of Knowledge, and Google Scholar. Data from studies that met the inclusion criteria were extracted for further exploration of heterogeneity, including calculation of the average sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and analysis of SROC(summary receiver operating characteristic) curves.

Results

Fifteen studies met our inclusion criteria. A summary of the meta-analysis of the efficacy of the anti-E746-A750 antibody was as follows: sensitivity, 0.60 (95% CI, 0.55–0.64); specificity, 0.98 (95% CI, 0.97–0.98); PLR, 33.50 (95% CI, 13.96–80.39); NLR, 0.39 (95% CI, 0.30–0.51) and DOR, 111.17 (95% CI, 62.22–198.63). A similar meta-analysis was performed for the anti-L858R antibody with results as follows: sensitivity, 0.76 (95% CI, 0.71–0.79); specificity, 0.96 (95% CI, 0.95–0.97); PLR, 24.42 (95% CI, 11.66–51.17); NLR, 0.22 (95% CI, 0.12–0.39) and DOR, 126.66 (95% CI, 54.60–293.82).

Conclusion

Immunohistochemistry alone is sufficient for the detection of EGFR mutations if the result is positive. Molecular-based analyses are necessary only if the anti-E746-A750 antibody results are negative. Immunohistochemistry seems more suitable for clinical screening for EGFR mutations prior to molecular-based analysis.  相似文献   

18.
19.

Background

Multi-targeted antiangiogenic tyrosine kinase inhibitors (MATKIs) have been studied in many randomized controlled trials (RCTs) for treatment of advanced non-small cell lung cancer (NSCLC). We seek to summarize the most up-to-date evidences and perform a timely meta-analysis.

Methods

Electronic databases were searched for eligible studies. We defined the experimental arm as MATKI-containing group and the control arm as MATKI-free group. The extracted data on objective response rates (ORR), disease control rates (DCR), progression-free survival (PFS) and overall survival (OS) were pooled. Subgroup and sensitivity analyses were conducted.

Results

Twenty phase II/III RCTs that involved a total of 10834 participants were included. Overall, MATKI-containing group was associated with significant superior ORR (OR 1.29, 95% CI 1.08 to 1.55, P = 0.006) and prolonged PFS (HR 0.83, 0.78 to 0.90, P = 0.005) compared to the MATKI-free group. However, no significant improvements in DCR (OR 1.08, 1.00 to 1.17, P = 0.054) or OS (HR 0.97, 0.93 to 1.01, P = 0.106) were observed. Subgroup analyses showed that the benefits were predominantly presented in pooled results of studies enrolling previously-treated patients, studies not limiting to enroll non-squamous NSCLC, and studies using MATKIs in combination with the control regimens as experimental therapies.

Conclusions

This up-to-date meta-analysis showed that MATKIs did increase ORR and prolong PFS, with no significant improvement in DCR and OS. The advantages of MATKIs were most prominent in patients who received a MATKI in combination with standard treatments and in patients who had previously experienced chemotherapy. We suggest further discussion as to the inclusion criteria of future studies on MATKIs regarding histology.  相似文献   

20.
Epidermal growth factor receptor tyrosine kinase (EGFR-TK) inhibitors are useful in treating different advanced human cancers; however, their clinical efficacy varies. This study detected K-ras mutations to predict the efficacy of EGFR-TK inhibitor cetuximab treatment on Chinese patients with metastatic colorectal cancer (mCRC). A total of 87 patients with metastatic colorectal cancer were treated with cetuximab for 2-16 months, in combination with chemotherapy between August 2008 and July 2012, and tissue samples were used to detect K-ras mutations. The data showed that K-ras mutation occurred in 27/87 (31%). The objective response rates and disease control rate in K-ras wild type and mutant patients were 42% (25/60) versus 11% (3/27) (p<0.05) and 60% (36/60) versus 26% (7/27) (p<0.05), respectively. Patients with the wild-type K-ras had significantly higher median survival times and progression-free survival, than patients with mutated K-ras (21 months versus 17 months, p=0.017; 10 months versus 6 months, p=0.6). These findings suggest that a high frequency of K-ras mutations occurs in Chinese mCRC patients and that K-ras mutation is required to select patients for eligibility for cetuximab therapy. Further prospective studies using a large sample size are needed to confirm these preliminary findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号