首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Increased concentrations of extracellular solutes affect cell function and fate by stimulating cellular responses, such as evoking MAPK cascades, altering cell cycle progression, and causing apoptosis. Our study results here demonstrate that hyperosmotic stress induced H2AX phosphorylation (γH2AX) by an unrevealed kinase cascade involving polo-like kinase 3 (Plk3) in human corneal epithelial (HCE) cells. We found that hyperosmotic stress induced DNA-double strand breaks and increased γH2AX in HCE cells. Phosphorylation of H2AX at serine 139 was catalyzed by hyperosmotic stress-induced activation of Plk3. Plk3 directly interacted with H2AX and was colocalized with γH2AX in the nuclei of hyperosmotic stress-induced cells. Suppression of Plk3 activity by overexpression of a kinase-silencing mutant or by knocking down Plk3 mRNA effectively reduced γH2AX in hyperosmotic stress-induced cells. This was consistent with results that show γH2AX was markedly suppressed in the Plk3−/− knock-out mouse corneal epithelial layer in response to hyperosmotic stimulation. The effect of hyperosmotic stress-activated Plk3 and increased γH2AX in cell cycle progression showed an accumulation of G2/M phase, altered population in G1 and S phases, and increased apoptosis. Our results for the first time reveal that hyperosmotic stress-activated Plk3 elicited γH2AX. This Plk3-mediated activation of γH2AX subsequently regulates the cell cycle progression and cell fate.  相似文献   

3.
We find that substance P (SP) and insulin-like growth factor-1 (IGF-1) demonstrate a synergistic effect on the stimulation of rabbit corneal epithelial migration in an organ culture. The addition of either SP or IGF-1 alone did not affect epithelial migration, while the combination of SP and IGF-1 stimulated epithelial migration in a dose-dependent fashion. The synergistic effects of SP and IGF-1 on corneal epithelial migration were nulled by the addition of a SP antagonist or enkephalinase. Among neurotransmitters (vasoactive intestinal peptide, calcitonin gene-related peptide, acethylcholine chloride, norepinephrine, serotonin) or tachykinins (neurokinin A, neurokinin B, kassinin, eledoisin, physalaemin), only SP demonstrated a synergistic effect with IGF-1 on cellular migration. In contrast, the combination of SP and IGF-1 did not affect the incorporation of 3H-thymidine into corneal epithelial cells. The attachment of the corneal epithelial cells to fibronectin, collagen type IV, and laminin matrices increased after treatment of the cells with SP and IGF-1, but SP or IGF-1 by themselves did not affect the attachment of the cells to these extracellular matrix proteins. An identical synergistic effect on corneal epithelial migration was observed when an NK-1 receptor agonist was used in place of SP, suggesting the synergistic effect of SP and IGF-1 might be mediated through the NK-1 receptor system. These results suggest that the maintenance of the normal integrity of the corneal epithelium might be regulated by both humoral and neural factors. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Cystic fibrosis is characterized by chronic inflammation and an imbalance in the concentrations of alveolar and lung oxidants and antioxidants, which result in cell damage. Modifications in lung glutathione concentrations are recognized as a salient feature of inflammatory lung diseases such as cystic fibrosis, and glutathione plays a major role in protection against oxidative stress and is important in modulation of apoptosis. The cystic fibrosis transmembrane conductance regulator (CFTR) is permeable to Cl(-), larger organic ions, and reduced and oxidized forms of glutathione, and the DeltaF508 CFTR mutation found in cystic fibrosis patients has been correlated with impaired glutathione transport in cystic fibrosis airway epithelia. Because intracellular glutathione protects against oxidative stress-induced apoptosis, we studied the susceptibility of epithelial cells (HeLa and IB3-1) expressing normal and mutant CFTR to apoptosis triggered by H(2)O(2). We find that cells with normal CFTR are more sensitive to oxidative stress-induced apoptosis than cells expressing defective CFTR. In addition, sensitivity to apoptosis could be correlated with glutathione levels, because depletion of intracellular glutathione results in higher levels of apoptosis, and glutathione levels decreased faster in cells expressing normal CFTR than in cells with defective CFTR during incubation with H(2)O(2). The pro-apoptotic BCL-2 family member, BAX, is also activated faster in cells expressing normal CFTR than in those with mutant CFTR under these conditions, and artificial glutathione depletion increases the extent of BAX activation. These results suggest that glutathione-dependent BAX activation in cells with normal CFTR represents an early step in oxidative stress-induced apoptosis of these cells.  相似文献   

5.
Our previous studies demonstrated that p75NTR confers protection against oxidative stress-induced apoptosis upon PC12 cells; however, the mechanisms responsible for this effect are not known. The present studies reveal decreased mitochondrion membrane potential and increased generation of reactive oxygen species (ROS) in p75NTR-deficient PC12 cells as well as diminution of ROS generation after transfection of a full-length p75NTR construct into these cells. They also show that p75NTR deficiency attenuates activation of the phosphatidylinositol 3-kinase → phospho-Akt/protein kinase B pathway in PC12 cells by oxidative stress or neurotrophic ligands and inhibition of Akt phosphorylation decreases the glutathione (GSH) content in PC12 cells. In addition, decreased de novo GSH synthesis and increased GSH consumption are observed in p75NTR-deficient cells. These findings indicate that p75NTR regulates cellular handling of ROS to effect a survival response to oxidative stress.  相似文献   

6.
Many data suggest the deep involvement of the substance P (SP)/neurokinin (NK)-1 receptor system in cancer: (1) Tumor cells express SP, NK-1 receptors and mRNA for the tachykinin NK-1 receptor; (2) Several isoforms of the NK-1 receptor are expressed in tumor cells; (3) the NK-1 receptor is involved in the viability of tumor cells; (4) NK-1 receptors are overexpressed in tumor cells in comparison with normal ones and malignant tissues express more NK-1 receptors than benign tissues; (5) Tumor cells expressing the most malignant phenotypes show an increased percentage of NK-1 receptor expression; (6) The expression of preprotachykinin A is increased in tumor cells in comparison with the levels found in normal cells; (7) SP induces the proliferation and migration of tumor cells and stimulates angiogenesis by increasing the proliferation of endothelial cells; (8) NK-1 receptor antagonists elicit the inhibition of tumor cell growth; (9) The specific antitumor action of NK-1 receptor antagonists on tumor cells occurs through the NK-1 receptor; (10) Tumor cell death is due to apoptosis; (11) NK-1 receptor antagonists inhibit the migration of tumor cells and neoangiogenesis. The NK-1 receptor is a therapeutic target in cancer and NK-1 receptor antagonists could be considered as broad-spectrum antitumor drugs for the treatment of cancer. It seems that a common mechanism for cancer cell proliferation mediated by SP and the NK-1 receptor is triggered, as well as a common mechanism exerted by NK-1 receptor antagonists on tumor cells, i.e. apoptosis.  相似文献   

7.
We have recently shown that hyperosmotic stress activates p65/RelB NFkappaB in cultured cardiomyocytes with dichotomic actions on caspase activation and cell death. It remains unexplored how NFkappaB is regulated in cultured rat cardiomyocytes exposed to hyperosmotic stress. We study here: (a) if hyperosmotic stress triggers reactive oxygen species (ROS) generation and in turn whether they regulate NFkappaB and (b) if insulin-like growth factor-1 (IGF-1) modulates ROS production and NFkappaB activation in hyperosmotically-stressed cardiomyocytes. The results showed that hyperosmotic stress generated ROS in cultured cardiac myocytes, in particular the hydroxyl and superoxide species, which were inhibited by N-acetylcysteine (NAC). Hyperosmotic stress-induced NFkappaB activation as determined by IkappaBalpha degradation and NFkappaB DNA binding. NFkappaB activation and procaspase-3 and -9 fragmentation were prevented by NAC and IGF-1. However, this growth factor did not decrease ROS generation induced by hyperosmotic stress, suggesting that its actions over NFkappaB and caspase activation may be due to modulation of events downstream of ROS generation. We conclude that hyperosmotic stress induces ROS, which in turn activates NFkappaB and caspases. IGF-1 prevents NFkappaB activation by a ROS-independent mechanism.  相似文献   

8.
Phosphatidylinositol 3 kinase (PI3K)/AKT (also called protein kinase B, PKB) signalling regulates various cellular processes, such as apoptosis, cell proliferation, the cell cycle, protein synthesis, glucose metabolism, and telomere activity. Corneal epithelial cells (CECs) are the outermost cells of the cornea; they maintain good optical performance and act as a physical and immune barrier. Various growth factors, including epidermal growth factor receptor (EGFR) ligands, insulin-like growth factor 1 (IGF1), neurokinin 1 (NK-1), and insulin activate the PI3K/AKT signalling pathway by binding their receptors and promote antiapoptotic, anti-inflammatory, proliferative, and migratory functions and wound healing in the corneal epithelium (CE). Reactive oxygen species (ROS) regulate apoptosis and inflammation in CECs in a concentration-dependent manner. Extreme environments induce excess ROS accumulation, inhibit PI3K/AKT, and cause apoptosis and inflammation in CECs. However, at low or moderate levels, ROS activate PI3K/AKT signalling, inhibiting apoptosis and stimulating proliferation of healthy CECs. Diabetes-associated hyperglycaemia directly inhibit PI3K/AKT signalling by increasing ROS and endoplasmic reticulum (ER) stress levels or suppressing the expression of growth factors receptors and cause diabetic keratopathy (DK) in CECs. Similarly, hyperosmolarity and ROS accumulation suppress PI3K/AKT signalling in dry eye disease (DED). However, significant overactivation of the PI3K/AKT signalling pathway, which mediates inflammation in CECs, is observed in both infectious and noninfectious keratitis. Overall, upon activation by growth factors and NK-1, PI3K/AKT signalling promotes the proliferation, migration, and anti-apoptosis of CECs, and these processes can be regulated by ROS in a concentration-dependent manner. Moreover, PI3K/AKT signalling pathway is inhibited in CECs from individuals with DK and DED, but is overactivated by keratitis.Subject terms: Growth factor signalling, Apoptosis, Extracellular matrix  相似文献   

9.
We have previously shown that the receptor for substance P (SP), neurokinin-1 receptor (NK-1R), is a marker of human mucosal but not peripheral mononuclear cells. In the present study, we investigate NK-1R expression in the human colonic mucosa in vivo, particularly in the epithelial cells. We investigate the influence of proinflammatory Th1 cytokines and SP on expression and function of NK-1R in colonic epithelial cells in vitro. Using in situ hybridization to detect NK-1R mRNA, and immunohistochemistry to detect NK-1R protein, colonic epithelial cells were found to express NK-1R in vivo. In contrast, colon epithelial cell lines (Caco-2, HT29, SW620, T84) were negative for NK-1R mRNA and protein. However, stimulation with a proinflammatory cytokine cocktail containing IFN-gamma, TNF-alpha, and IL-1beta, caused induction of NK-1R expression. Expression of NK-1R in human colonic epithelial cells in vivo may therefore reflect cytokine conditioning by the mucosal microenvironment. SP did not alter ion transport in monolayers of cytokine-treated T84 cells. While SP stimulated epithelial ion transport in colonic mucosae ex vivo, this was not a direct effect of SP on the epithelial cells, and appeared to be neurally mediated. However, SP (10(-10)-10(-8) M) elicited a dose-dependent proliferative effect on cytokine-stimulated, but not unstimulated, SW620 cells. Proliferation of the epithelial cells in response to SP was mediated specifically via cytokine-induced NK-1R, since an NK-1R-specific antagonist (Spantide 1) completely blocked SP-mediated proliferation in the cytokine-treated cells. Our results therefore demonstrate that proinflammatory cytokines induce expression of NK-1R in human colonic epithelial cell lines, and that SP induces proliferation of the epithelial cells via cytokine-induced NK-1R.  相似文献   

10.
11.
Although the absence of Substance P (SP), a neurotransmitter in the trigeminal nerve, has been speculated as a cause for developing neurotrophic keratitis, its exact pathogenesis is still not clarified. In a previous report, we showed with electron microscopic examination that epithelial cell attachment was weakened in denervated corneas. In this study, SV40-transformed human corneal epithelial cells (HCE-Ts) were used to explore the molecular mechanisms responsible for mediating regulation of E-cadherin expression in response to Substance P receptor stimulation. Expression of the mRNAs for specific SP receptors, neurokinin (NK)-1R, NK-2R, and NK-3R, was demonstrated with RT-PCR. The cells were treated with various concentrations of SP in vitro, and the expression of an adhesion molecule E-cadherin was analyzed by immunofluorescence, immunoblotting, and enzyme-linked immunosorbent assay (ELISA) using an anti-E-cadherin antibody. E-cadherin expression was increased by SP in a dose-dependent manner both in the cytosolic fraction and in the cell membrane fraction. This increase in E-cadherin expression was completely inhibited by Calphostin C (PKC inhibitor) and KN-62 (CaMK inhibitor), but not by H-89 (PKA inhibitor), indicating that SP-induced E-cadherin expression involves the activation of protein kinase C (PKC) and calmodulin kinase (CaMK). SP did not affect cell proliferation at all. All these findings indicate that SP induced E-cadherin expression through PKC and CaMK activation and suggest that a lack of SP may account in part for the pathogenesis of neurotrophic keratitis.  相似文献   

12.
Focal adhesion kinase (FAK) is a signaling molecule associated with cell survival. Previously, we showed that thimerosal, a reactive oxygen species (ROS) generator, can acutely induce FAK tyrosine phosphorylation (within minutes) and chronically induce apoptosis (within days) by redox modulation in HeLa S cells. In the present study, we report that a prolonged oxidative stress by thimerosal induces a remarkable cleavage of FAK, which is accompanied with apoptosis. In fact, the kinetics of FAK cleavage has a good correlation with and actually preceding the apoptosis that was independent of anoikis. The effects were almost completely blocked by the pretreatment with either N-acetyl-l-cysteine (ROS scavenger) or Z-VAD-FMK (pan-caspase inhibitor), suggesting ROS-induced caspase activation as a key mechanism. They could be also reproduced by hydrogen peroxide alone, which appeared to be responsible for thimerosal-mediated oxidative stress-induced apoptosis. Additionally, the down regulation of FAK with antisense oligonucleotide dramatically augmented thimerosal-induced apoptosis. We could observe similar results using human corneal epithelial cells. Taken together, our results show that FAK is a critical cellular target of caspases during oxidative stress (particularly by hydrogen peroxide), resulting in the acceleration of subsequent apoptosis regardless of the anchorage status of cells. From the present results, it is more likely that not cell detachment but the proteolytic cleavage (or inhibition) of FAK is a key modulator as well as a promising indicator of apoptosis in epithelial cells under oxidative stress.  相似文献   

13.
14.
Sepsis is characterized by systematic inflammation and contributes to cardiac dysfunction. This study was designed to examine the effect of protein kinase B (Akt) activation on lipopolysaccharide-induced cardiac anomalies and underlying mechanism(s) involved. Mechanical and intracellular Ca2 + properties were examined in myocardium from wild-type and transgenic mice with cardiac-specific chronic Akt overexpression following LPS (4 mg/kg, i.p.) challenge. Akt signaling cascade (Akt, phosphatase and tensin homologue deleted on chromosome ten, glycogen synthase kinase 3 beta), stress signal (extracellular-signal-regulated kinases, c-Jun N-terminal kinases, p38), apoptotic markers (Bcl-2 associated X protein, caspase-3/-9), endoplasmic reticulum (ER) stress markers (glucose-regulated protein 78, growth arrest and DNA damage induced gene-153, eukaryotic initiation factor 2α), inflammatory markers (tumor necrosis factor α, interleukin-1β, interleukin-6) and autophagic markers (Beclin-1, light chain 3B, autophagy-related gene 7 and sequestosome 1) were evaluated. Our results revealed that LPS induced marked decrease in ejection fraction, fractional shortening, cardiomyocyte contractile capacity with dampened intracellular Ca2 + release and clearance, elevated reactive oxygen species (ROS) generation and decreased glutathione and glutathione disulfide (GSH/GSSG) ratio, increased ERK, JNK, p38, GRP78, Gadd153, eIF2α, BAX, caspase-3 and -9, downregulated B cell lymphoma 2 (Bcl-2), the effects of which were significantly attenuated or obliterated by Akt activation. Akt activation itself did not affect cardiac contractile and intracellular Ca2 + properties, ROS production, oxidative stress, apoptosis and ER stress. In addition, LPS upregulated levels of Beclin-1, LC3B and Atg7, while suppressing p62 accumulation. Akt activation did not affect Beclin-1, LC3B, Atg7 and p62 in the presence or absence of LPS. Akt overexpression promoted phosphorylation of Akt and GSK3β. In vitro study using the GSK3β inhibitor SB216763 mimicked the response elicited by chronic Akt activation. Taken together, these data showed that Akt activation ameliorated LPS-induced cardiac contractile and intracellular Ca2 + anomalies through inhibition of apoptosis and ER stress, possibly involving an Akt/GSK3β-dependent mechanism.  相似文献   

15.
Although neurokinin 1 receptor antagonists prevent ethanol (EtOH)-induced gastric lesions, the mechanisms by which EtOH releases substance P (SP) and SP damages the mucosa are unknown. We hypothesized that EtOH activates transient receptor potential vanilloid 1 (TRPV1) on sensory nerves to release SP, which stimulates epithelial neurokinin 1 receptors to generate damaging reactive oxygen species (ROS). SP release was assayed in the mouse stomach, ROS were detected using dichlorofluorescein diacetate, and neurokinin 1 receptors were localized by immunofluorescence. EtOH-induced SP release was prevented by TRPV1 antagonism. High dose EtOH caused lesions, and TRPV1 or neurokinin 1 receptor antagonism and neurokinin 1 receptor deletion inhibited lesion formation. Coadministration of low, innocuous doses of EtOH and SP caused lesions by a TRPV1-independent but neurokinin 1 receptor-dependent process. EtOH, capsaicin, and SP stimulated generation of ROS by superficial gastric epithelial cells expressing neurokinin 1 receptors by a neurokinin 1 receptor-dependent mechanism. ROS scavengers prevented lesions induced by a high EtOH dose or a low EtOH dose plus SP. Gastric lesions are caused by an initial detrimental effect of EtOH, which is damaging only if associated with TRPV1 activation, SP release from sensory nerves, stimulation of neurokinin 1 receptors on epithelial cells, and ROS generation.  相似文献   

16.
Substance P (SP) participates in acute intestinal inflammation via binding to the G-protein-coupled neurokinin-1 receptor (NK-1R) and release of proinflammatory cytokines from colonic epithelial cells. SP also stimulates cell proliferation, a critical event in tissue healing during chronic colitis, via transactivation of the epidermal growth factor (EGF) receptor (EGFR) and activation of mitogen-activated protein kinase (MAPK). Here we examined the mechanism by which SP induces EGFR and MAPK activation. We used non-transformed human NCM460 colonocytes stably transfected with the human NK-1R (NCM460-NK-1R cells) as well as untransfected U373 MG cells expressing high levels of endogenous NK-1R. Exposure of both cell lines to SP (10(-7) m) stimulated EGFR activation (1 min) followed by extracellular signal-regulated protein kinase (ERK1/2) activation (2-5 min). SP-induced ERK1/2 activation was blocked by pretreatment with the metalloproteinase inhibitor Batimastat/GM6001, the EGFR phosphorylation inhibitor AG1478, and the tumor necrosis factor-alpha-converting enzyme (TACE) inhibitor TAPI-1. Pretreatment with antibodies against potential EGFR ligands suggested that transforming growth factor-alpha (TGFalpha), but not the other EGFR ligands EGF, heparin-binding EGF, or amphiregulin, mediates SP-induced EGFR transactivation. SP stimulated TGFalpha release into the extracellular space that was measurable within 2 min, and this release was inhibited by metalloproteinase inhibitors and the TACE inhibitor TAPI-1. SP also induced MAPK-mediated cell proliferation that was inhibited by TACE, matrix metalloproteinase (MMP), EGFR, and MEK1 inhibitors. Thus, in human colonocytes, NK-1R-induced EGFR and MAPK activation and cell proliferation involve matrix metalloproteinases (most likely TACE) and the release of TGFalpha. These signaling mechanisms may be involved in the protective effects of NK-1R in chronic colitis.  相似文献   

17.
Previously we demonstrated that insulin protects against neuronal oxidative stress by restoring antioxidants and energy metabolism. In this study, we analysed how insulin influences insulin-(IR) and insulin growth factor-1 receptor (IGF-1R) intracellular signaling pathways after oxidative stress caused by ascorbate/Fe2+ in rat cortical neurons. Insulin prevented oxidative stress-induced decrease in tyrosine phosphorylation of IR and IGF-1R and Akt inactivation. Insulin also decreased the active form of glycogen synthase kinase-3beta (GSK-3beta) upon oxidation. Since phosphatidylinositol 3-kinase (PI-3K)/Akt-mediated inhibition of GSK-3beta may stimulate protein synthesis and decrease apoptosis, we analysed mRNA and protein expression of "candidate" proteins involved in antioxidant defense, glucose metabolism and apoptosis. Insulin prevented oxidative stress-induced increase in glutathione peroxidase-1 and decrease in hexokinase-II expression, supporting previous findings of changes in glutathione redox cycle and glycolysis. Moreover, insulin precluded Bcl-2 decrease and caspase-3 increased expression. Concordantly, insulin abolished caspase-3 activity and DNA fragmentation caused by oxidative stress. Thus, insulin-mediated activation of IR/IGF-1R stimulates PI-3K/Akt and inhibits GSK-3beta signaling pathways, modifying neuronal antioxidant defense-, glucose metabolism- and anti-apoptotic-associated protein synthesis. These and previous data implicate insulin as a promising neuroprotective agent against oxidative stress associated with neurodegenerative diseases.  相似文献   

18.
The role of substance P in inflammatory disease   总被引:26,自引:0,他引:26  
The diffuse neuroendocrine system consists of specialised endocrine cells and peptidergic nerves and is present in all organs of the body. Substance P (SP) is secreted by nerves and inflammatory cells such as macrophages, eosinophils, lymphocytes, and dendritic cells and acts by binding to the neurokinin-1 receptor (NK-1R). SP has proinflammatory effects in immune and epithelial cells and participates in inflammatory diseases of the respiratory, gastrointestinal, and musculoskeletal systems. Many substances induce neuropeptide release from sensory nerves in the lung, including allergen, histamine, prostaglandins, and leukotrienes. Patients with asthma are hyperresponsive to SP and NK-1R expression is increased in their bronchi. Neurogenic inflammation also participates in virus-associated respiratory infection, non-productive cough, allergic rhinitis, and sarcoidosis. SP regulates smooth muscle contractility, epithelial ion transport, vascular permeability, and immune function in the gastrointestinal tract. Elevated levels of SP and upregulated NK-1R expression have been reported in the rectum and colon of patients with inflammatory bowel disease (IBD), and correlate with disease activity. Increased levels of SP are found in the synovial fluid and serum of patients with rheumatoid arthritis (RA) and NK-1R mRNA is upregulated in RA synoviocytes. Glucocorticoids may attenuate neurogenic inflammation by decreasing NK-1R expression in epithelial and inflammatory cells and increasing production of neutral endopeptidase (NEP), an enzyme that degrades SP. Preventing the proinflammatory effects of SP using tachykinin receptor antagonists may have therapeutic potential in inflammatory diseases such as asthma, sarcoidosis, chronic bronchitis, IBD, and RA. In this paper, we review the role that SP plays in inflammatory disease.  相似文献   

19.
Hypoxia/reoxygenation stress induces the activation of specific signaling proteins and activator protein 1 (AP-1) to regulate cell cycle regression and apoptosis. In the present study, we report that hypoxia/reoxygenation stress activates AP-1 by increasing c-Jun phosphorylation and DNA binding activity through activation of Polo-like-kinase 3 (Plk3) resulting in apoptosis. The specific effect of hypoxia/reoxygenation stress on Plk3 activation resulting in c-Jun phosphorylation was the opposite of UV irradiation-induced responses that are meanly independent on activation of the stress-induced JNK signaling pathway in human corneal epithelial (HCE) cells. The effect of hypoxia/reoxygenation stress-induced Plk3 activation on increased c-Jun phosphorylation and apoptosis was also mimicked by exposure of cells to CoCl(2). Hypoxia/reoxygenation activated Plk3 in HCE cells to directly phosphorylate c-Jun proteins at phosphorylation sites Ser-63 and Ser-73, and to increase DNA binding activity of c-Jun, detected by EMSA. Further evidence demonstrated that Plk3 and phospho-c-Jun were immunocolocalized in the nuclear compartment of hypoxia/reoxygenation stress-induced cells. Increased Plk3 activity by overexpression of wild-type and dominantly positive Plk3 enhanced the effect of hypoxia/reoxygenation on c-Jun phosphorylation and cell death. In contrast, knocking-down Plk3 mRNA suppressed hypoxia-induced c-Jun phosphorylation. Our results provide a new mechanism indicating that hypoxia/reoxygenation induces Plk3 activation instead of the JNK effect to directly phosphorylate and activate c-Jun, subsequently contributing to apoptosis in HCE cells.  相似文献   

20.
Hsp27 inhibits mitochondrial injury and apoptosis in both normal and cancer cells by an unknown mechanism. To test the hypothesis that Hsp27 decreases apoptosis by inhibiting Bax, Hsp27 expression was manipulated in renal epithelial cells before transient metabolic stress, an insult that activates Bax, induces mitochondrial injury, and causes apoptosis. Compared with control, enhanced Hsp27 expression inhibited conformational Bax activation, oligomerization, and translocation to mitochondria, reduced the leakage of both cytochrome c and apoptosis-inducing factor, and significantly improved cell survival by >50% after stress. In contrast, Hsp27 down-regulation using RNA-mediated interference promoted Bax activation, increased Bax translocation, and reduced cell survival after stress. Immunoprecipitation did not detect Hsp27-Bax interaction before, during, or after stress, suggesting that Hsp27 indirectly inhibits Bax. During stress, Hsp27 expression prevented the inactivation of Akt, a pro-survival kinase, and increased the interaction between Akt and Bax, an Akt substrate. In contrast, Hsp27 RNA-mediated interference promoted Akt inactivation during stress. Hsp27 up- or down-regulation markedly altered the activity of phosphatidylinositol 3-kinase (PI3-kinase), a major regulator of Akt. Furthermore, distinct PI3-kinase inhibitors completely abrogated the protective effect of Hsp27 expression on Akt activation, Bax inactivation, and cell survival. These data show that Hsp27 antagonizes Bax-mediated mitochondrial injury and apoptosis by promoting Akt activation via a PI3-kinase-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号