首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioluminescence in the marine bacterium Vibrio harveyi is cell density dependent and is regulated by small molecules (autoinducers) excreted by the bacteria. The autoinducer signals are relayed to a central regulator, LuxO, which acts in its phosphorylated form as a repressor of the lux operon at the early stages of cell growth. We report in these studies the purification to homogeneity of a luxO DNA binding protein (LuxT) from V. harveyi after five major chromatography steps, including a highly effective DNA affinity chromatography step and reverse-phase HPLC. Regeneration of binding activity was accomplished after HPLC and SDS-PAGE by renaturation of LuxT from guanidine hydrochloride. It was also demonstrated that the functional LuxT was a dimer of 17 kDa that bound tightly (K(d) = 2 nM) to the luxO promoter. The sequences of three tryptic peptides obtained on digestion of the purified protein did not match any sequences in the Protein Data Bank, indicating that LuxT is a new V. harveyi lux regulatory protein.  相似文献   

2.
3.
4.
5.
6.
Two independent quorum-sensing systems control the expression of bioluminescence (lux) in the marine bacterium Vibrio harveyi. Each system is composed of an autoinducer (AI-1 or AI-2) and its cognate sensor (LuxN or LuxQ). The sensors are two-component hybrid kinases, containing both sensor kinase domains and response regulator domains. Sensory information from the two systems is relayed by a phosphotransfer mechanism to a shared integrator protein called LuxO. LuxO is a member of the response regulator class of the two-component family of signal transduction proteins, and LuxO acts negatively to control luminescence. In this report, missense and in frame deletion mutations were constructed in luxO that encoded proteins mimicking either the phosphorylated or the unphosphorylated form, and these mutations were introduced into the V. harveyi chromosome at the luxO locus. Phenotypical analyses of the resulting mutant V. harveyi strains indicate that the phosphorylated form of LuxO is the repressor, and that the unphosphorylated form of the protein is inactive. Analysis of the lux phenotypes of V. harveyi strains containing single and double luxN and luxQ mutations indicate that LuxN and LuxQ have two activities on LuxO. They act as LuxO protein kinases at low cell density in the absence of autoinducers, and they switch to LuxO protein phosphatases at high cell density in the presence of autoinducers. Furthermore, the timing and potency of inputs from the two systems into regulation of quorum sensing are different.  相似文献   

7.
8.
Mutagenesis with transposon mini-Mulac was used previously to identify a regulatory locus necessary for expression of bioluminescence genes, lux, in Vibrio harveyi (M. Martin, R. Showalter, and M. Silverman, J. Bacteriol. 171:2406-2414, 1989). Mutants with transposon insertions in this regulatory locus were used to construct a hybridization probe which was used in this study to detect recombinants in a cosmid library containing the homologous DNA. Recombinant cosmids with this DNA stimulated expression of the genes encoding enzymes for luminescence, i.e., the luxCDABE operon, which were positioned in trans on a compatible replicon in Escherichia coli. Transposon mutagenesis and analysis of the DNA sequence of the cloned DNA indicated that regulatory function resided in a single gene of about 0.6-kilobases named luxR. Expression of bioluminescence in V. harveyi and in the fish light-organ symbiont Vibrio fischeri is controlled by density-sensing mechanisms involving the accumulation of small signal molecules called autoinducers, but similarity of the two luminescence systems at the molecular level was not apparent in this study. The amino acid sequence of the LuxR product of V. harveyi, which indicates a structural relationship to some DNA-binding proteins, is not similar to the sequence of the protein that regulates expression of luminescence in V. fischeri. In addition, reconstitution of autoinducer-controlled luminescence in recombinant E. coli, already achieved with lux genes cloned from V. fischeri, was not accomplished with the isolation of luxR from V. harveyi, suggesting a requirement for an additional regulatory component.  相似文献   

9.
Presence of the quorum-sensing regulation system in Vibrio mimicus was investigated. The culture supernatants of V. mimicus strains were found to possess AI-2 autoinducer like activity, and the strains were found to harbor the genes which are homologous to luxS, luxO, and luxR of V. harveyi. These genes of V. harveyi have been shown to be important components of V. harveyi-like quorum-sensing system. The luxO gene homologue known to encode LuxO, the central component of the regulation system, was disrupted, and effects on protease and hemolysin activity were studied. Disruption of luxO gene resulted in the increased protease activity, but the hemolysin activity did not vary considerably.  相似文献   

10.
11.
利用兼并PCR的方法克隆得到哈氏弧菌T4的DNA腺嘌呤甲基化酶(dam)基因,序列分析表明该基因编码279个氨基酸,与其它已知弧菌的Dam具有较高的同源性,其中与副溶血弧菌Dam的相同性达95%。功能检验表明所克隆的dam基因在大肠杆菌中具有DNA腺嘌呤甲基化酶活性,能够甲基化大肠杆菌染色体DNA GATC序列中的腺嘌呤。运用染色体步移法获得dam基因上游的3251 bp DNA,发现该区域含有3个基因,其与dam在染色体上的相对排列顺序为:莽草酸激酶-脱氢奎尼酸合成酶-damX-dam。对dam上游DNA序列研究发现位于翻译起点ATG上游的78bp、112bp和477bpDNA片段皆具有启动子活性,但前者的活性明显高于后二者。  相似文献   

12.
Quorum sensing, involving signal transduction via the two-component response regulator LuxO to its downstream target LuxR, controls luminescence in the marine bacterium Vibrio harveyi. LuxR is a DNA binding protein that acts as both activator of the lux operon and repressor of its own gene. In order to determine if any other genes are affected by quorum sensing in V. harveyi, an assay for luxR-dependent promotion was devised using a genomic library maintained in a novel luxAB (luciferase) reporter. Screening in Escherichia coli DH-21 (lacI(sq)) entailed the addition of a second plasmid containing luxR under plac control. Four out of 5000 colonies showed luminescence stimulation upon IPTG induction of luxR. The four luxR-dependent promoters were upstream of argA, purM, lysE, and rluA, genes involved in arginine and purine biosyntheses, amino acid efflux, and pseudouridine synthesis, respectively. Based on analysis of luxR-dependent promoters, particularly that of argA, we describe a LuxR binding site, and implicate the coordination of LuxR with ArgR.  相似文献   

13.
14.
Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54   总被引:3,自引:0,他引:3  
The bioluminescent marine bacterium Vibrio harveyi controls light production (lux) by an elaborate quorum-sensing circuit. V. harveyi produces and responds to two different autoinducer signals (AI-1 and AI-2) to modulate the luciferase structural operon (luxCDABEGH) in response to changes in cell-population density. Unlike all other Gram-negative quorum-sensing organisms, V. harveyi regulates quorum sensing using a two-component phosphorylation-dephosphorylation cascade. Each autoinducer is recognized by a cognate hybrid sensor kinase (called LuxN and LuxQ). Both sensors transduce information to a shared phosphorelay protein called LuxU, which in turn conveys the signal to the response regulator protein LuxO. Phospho-LuxO is responsible for repression of luxCDABEGH expression at low cell density. In the present study, we demonstrate that LuxO functions as an activator protein via interaction with the alternative sigma factor, sigma54 (encoded by rpoN). Our results suggest that LuxO, together with sigma54, activates the expression of a negative regulator of luminescence. We also show that phenotypes other than lux are regulated by LuxO and sigma54, demonstrating that in Vibrio harveyi, quorum sensing controls multiple processes.  相似文献   

15.
Disruption of quorum sensing, bacterial cell-to-cell communication by means of small signal molecules, has been suggested as a new anti-infective strategy for aquaculture. However, data about the impact of quorum sensing on the virulence of aquatic pathogens are scarce. In this study, a model system using gnotobiotically cultured Artemia franciscana was developed in order to determine the impact of mutations in the quorum sensing systems of Aeromonas hydrophila, Vibrio anguillarum and V. harveyi on their virulence. Mutations in the autoinducer 2 (AI-2) synthase gene luxS, the AI-2 receptor gene luxP or the response regulator gene luxO of the dual channel quorum sensing system of V. harveyi abolished virulence of the strain towards Artemia. Moreover, the addition of an exogenous source of AI-2 could restore the virulence of an AI-2 non-producing mutant. In contrast, none of the mutations in either the acylated homoserine lactone (AHL)-mediated component of the V. harveyi system or the quorum sensing systems of Ae. hydrophila and V. anguillarum had an impact on virulence of these bacteria towards Artemia. Our results indicate that disruption of quorum sensing could be a good alternative strategy to combat infections caused by V. harveyi.  相似文献   

16.
Identification of Vibrio harveyi using PCR amplification of the toxR gene   总被引:5,自引:0,他引:5  
AIMS: The aim of this study was to develop an effective method for the identification of Vibrio harveyi based on using the toxR gene as a taxonomic marker. METHODS AND RESULTS: Primers for the toxR gene were designed for specificity to V. harveyi, and incorporated in a polymerase chain reaction (PCR). The results of the PCR, which took <5 h from DNA extraction to amplification, revealed positive amplification of the toxR gene fragment in 20 V. harveyi isolates including type strains, whereas DNA from 23 other Vibrionaceae type strains and 13 Vibrio parahaemolyticus strains were negative. The detection limit of the PCR was 4.0 x 10(3) cells ml(-1). In addition, the technique enabled the recognition of V. harveyi from diseased fish. CONCLUSIONS: The PCR was specific and sensitive, enabling the identification of V. harveyi within 5 h. SIGNIFICANCE AND IMPACT OF THE STUDY: The PCR allowed the rapid and sensitive detection of V. harveyi.  相似文献   

17.
AIMS: To demonstrate that Vibrio harveyi produces various types of toxins and how the production of those toxins is related with luminescence. METHODS AND RESULTS: Luminescence and toxicity of eight V. harveyi were evaluated. We demonstrated that all V. harveyi emitting luminescence were isolated from marine organisms and also showed that they were highly pathogenic when compared with culture collection V. harveyi based on cytotoxic assay test. On the contrary, V. harveyi isolated from shrimp farm showed no luminescence but showed high pathogenicity based on toxicity test. The effect of protease inhibitors on pathogenicity and luminescence was also investigated. We demonstrated that light emission of pathogenic V. harveyi remarkably decreased after addition of protease inhibitor. Furthermore, extracellular proteins from cell-free culture supernatant of luminescent and nonluminescent V. harveyi were compared using SDS-PAGE analysis. Results showed that there were differences in molecular weight and amount of proteins. CONCLUSIONS: Vibrio harveyi parasiting marine organisms have both luminescence and pathogenicity. Based on this study, luminescence and protease toxin activity in V. harveyi are related. Moreover, this paper clarified that V. harveyi produces various types of toxins. SIGNIFICANCE AND IMPACT OF THE STUDY: The current study demonstrated that V. harveyi produces two kinds of toxins, haemolysin and protease toxin. It may be clear roots of V. harveyi toxin.  相似文献   

18.
根据实验室分离的大黄鱼弧菌病主要病原菌哈维氏弧菌(Vib rio harveyi)GYC1108-1株的胞外蛋白酶基因序列,设计胞外蛋白酶基因(ΔProA)特异性引物,扩增获得1552bp的ΔProA基因,克隆于pUC57-T载体;将ΔProA基因亚克隆到原核表达载体pET-28a进行融合表达,SDS-PAGE电泳检测发现,ΔProA融合蛋白经IPTG诱导后在大肠杆菌中以包涵体形式表达,分子量大小约55kD,诱导5h的表达蛋白产量约占细菌总蛋白的21%。Western blot分析,表达的55kD蛋白具有较高免疫原性。用纯化的ΔProA融合蛋白对大黄鱼进行免疫试验,结果免疫保护率达到75%。    相似文献   

19.
20.
Crustacean hyperglycemic hormone (CHH) has many functions to regulate carbohydrate metabolism, ecdysis and reproduction including ion transport in crustaceans. The cDNA encoding CHH peptides containing 369 bp open reading frame encoding 122 amino acids was cloned from eyestalk of white shrimp (Litopenaeus vannamei) and was produced by a bacterial expression system. The biological activity of recombinant L. vannamei crustacean hyperglycemic hormone (rLV-CHH) was tested. The hemolymph glucose level of shrimp increased two-fold at 1h after the rLV-CHH injection and then returned to normal after 3h. In addition to the effect of rLV-CHH administration (25 μg/shrimp) on immunological responses of white shrimp against pathogenic bacteria, Vibrio harveyi was studied. Results showed that the blood parameters of shrimp injected with rLV-CHH; the THC, PO activity, serum protein level and clearance ability to V. harveyi, were also higher than those of Neg-protein and PBS-injected shrimp. The survival of shrimp injected with rLV-CHH was significantly higher (66.0%) than shrimp that injected with Neg-protein (33.3%) and PBS (28.9%) after 14 days. It is possible that the administration of rLV-CHH in L. vannamei exhibited a higher immune response related to resistance against V. harveyi infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号