首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryptococcus neoformans is the leading cause of fungal meningitis in immunocomprised populations. Although extensive studies have been conducted on signal transduction pathways important for fungal sexual reproduction and virulence, how fungal virulence is regulated during infection is still not understood. In this study, we identified the F-box protein Fbp1, which contains a putative F-box domain and 12 leucine-rich repeats (LRR). Although fbp1 mutants showed normal growth and produced normal major virulence factors, such as melanin and capsule, Fbp1 was found to be essential for fungal virulence, as fbp1 mutants were avirulent in a murine systemic-infection model. Fbp1 is also important for fungal sexual reproduction. Basidiospore production was blocked in bilateral mating between fbp1 mutants, even though normal dikaryotic hyphae were observed during mating. In vitro assays of stress responses revealed that fbp1 mutants are hypersensitive to SDS, but not calcofluor white (CFW) or Congo red, indicating that Fbp1 may regulate cell membrane integrity. Fbp1 physically interacts with Skp1 homologues in both Saccharomyces cerevisiae and C. neoformans via its F-box domain, suggesting it may function as part of an SCF (Skp1, Cullins, F-box proteins) E3 ligase. Overall, our study revealed that the F-box protein Fbp1 is essential for fungal sporulation and virulence in C. neoformans, which likely represents a conserved novel virulence control mechanism that involves the SCF E3 ubiquitin ligase-mediated proteolysis pathway.  相似文献   

2.
E3 ubiquitin ligases (E3s) target proteins for degradation by the 26S proteasome. In SKP1/CDC53/F-box protein-type E3s, substrate specificity is conferred by the interchangeable F-box protein subunit. The vast majority of the 694 F-box proteins encoded by the Arabidopsis thaliana genome remain to be understood. We characterize the VIER F-BOX PROTEINE (VFB; German for FOUR F-BOX PROTEINS) genes from Arabidopsis that belong to subfamily C of the Arabidopsis F-box protein superfamily. This subfamily also includes the F-box proteins TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) proteins and EIN3 BINDING F-BOX proteins, which regulate auxin and ethylene responses, respectively. We show that loss of VFB function causes delayed plant growth and reduced lateral root formation. We find that the expression of a number of auxin-responsive genes and the activity of DR5:beta-glucuronidase, a reporter for auxin response, are reduced in the vfb mutants. This finding correlates with an increase in the abundance of an AUXIN/INDOLE-3-ACETIC ACID repressor. However, we also find that auxin responses are not affected in the vfb mutants and that a representative VFB family member, VFB2, cannot functionally complement the tir1-1 mutant. We therefore exclude the possibility that VFBs are functional orthologs of TIR1/AFB proteins.  相似文献   

3.
4.
The ubiquitin-dependent protein degradation pathway plays diverse roles in eukaryotes. Previous studies indicate that both F-box and Kelch motifs are common in a variety of organisms. F-box proteins are subunits of E3 ubiquitin ligase complexes called SCFs (SKP1, Cullinl, F-box protein, and Rbxl); they have an N-terminal F-box motif that binds to SKP1 (S-phase kinase associated protein), and often have C-terminal protein-protein interaction domains, which specify the protein substrates for degradation via the ubiquitin pathway. One of the most frequently found protein interaction domains in F-box proteins is the Kelch repeat domain. Although both the F-box and Kelch repeats are ancient motifs, Kelch repeats-containing F-box proteins (KFB) have only been reported for human and Arabidopsis previously. The recent sequencing of the rice genome and other plant genomes provides an opportunity to examine the possible evolution history of KFB. We carried out extensive BLAST searches to identify putative KFBs in selected organisms, and analyzed their relationships phylogenetically. We also carried out the analysis of both gene duplication and gene expression of the KFBs in rice and Arabidopsis. Our study indicates that the origin of KFBs occurs before the divergence of animals and plants, and plant KFBs underwent rapid gene duplications.  相似文献   

5.
F-box蛋白质在植物生长发育中的功能   总被引:11,自引:0,他引:11  
秘彩莉  刘旭  张学勇 《遗传》2006,28(10):1337-1205
在真核生物中, 泛素介导的蛋白降解途径参与了许多生物学过程。SCF复合体是一种非常重要的E3泛素连接酶, 在植物中研究的最为深入。F-box蛋白包含一个F-box 基序, 是SCF复合体的一个亚基, 它决定了底物识别的特异性。目前, 从各种植物中已鉴定出大量的F-box蛋白质, 它们参与了植物激素(乙烯, 生长素, GA, JA)的信号传导以及自交不亲和、花器官发育等生物学过程, F-box蛋白还参与了植物的胁迫反应。最新研究结果显示, 一个F-box蛋白TIR1是生长素的受体。因此, F-box蛋白质介导的泛素化蛋白质降解途径可能是植物基因表达调控的重要机制。  相似文献   

6.
The F-box protein is the substrate recognition subunit of SCF (SKP1/CUL1/F-box) E3 ubiquitin ligase complex, a multicomponent RING-type E3 ligase involved in the regulation of numerous cellular processes by targeting critical regulatory proteins for ubiquitination. However, whether and how F-box proteins are regulated is largely unknown. Here we report that FBXO28, a poorly characterized F-box protein, is a novel substrate of SCF E3 ligase. Pharmaceutical or genetic inhibition of neddylation pathway that is required for the activation of SCF stabilizes FBXO28 and prolongs its half-life. Meanwhile, FBXO28 is subjected to ubiquitination and cullin1-based SCF complex promotes FBXO28 degradation. Moreover, deletion of F-box domain stabilizes FBXO28 and knockdown of endogenous FBXO28 strongly upregulates exogenous FBXO28 expression. Taken together, these data reveal that SCFFBXO28 is the E3 ligase responsible for the self-ubiquitination and proteasomal degradation of FBXO28, providing a new clue for the upstream signaling regulation for F-box proteins.  相似文献   

7.
Expression and interaction analysis of Arabidopsis Skp1-related genes   总被引:7,自引:0,他引:7  
Specific protein degradation has been observed in several aspects of development and differentiation in many organisms. One example of such proteolysis is regulated by protein polyubiquitination that is promoted by the SCF complex consisting of Skp1, cullin, and an F-box protein. We examined the activities of the Arabidopsis Skp1-related proteins (ASKs). Among 19 annotated ASK genes, we isolated 16 of the corresponding cDNAs (ASK1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19), and examined their gene products for interactions with 24 representatives of F-box proteins carrying various classes of the C-terminal domains using the yeast two-hybrid system. As a result, we found diverse binding specificities: ASK1, ASK2, ASK11 and ASK12 interacted well with COI1, FKF1, UFO-like protein, LRR-containing F-box proteins, and other F-box proteins with unknown C-terminal motifs. We also observed specific interaction between F-box proteins and ASK3, ASK9, ASK13, ASK14, ASK16 and ASK18. In contrast, we detected no interaction between any of the 12 ASK proteins and F-box proteins containing CRFA, CRFB or CRFC domains. Both histochemical and RT-PCR analysis of eight ASK genes expression revealed unique expression patterns for the respective genes.  相似文献   

8.
Selective protein degradation by the ubiquitin-proteosome pathway has recently emerged as a powerful regulatory mechanism in a wide variety of cellular processes. Ubiquitin conjugation requires the sequential activity of three enzymes or protein complexes called the ubiquitin-activating enzyme (E1), the ubiquitin-conjugating enzyme (E2), and the ubiquitin-protein ligase (E3). In most eukaryotes, there are a small number of similar E1 isoforms without apparent functional specificity. The specific selection of target proteins is accomplished by the E2 and E3 proteins. One of the best-characterized families of E3s are the SCF complexes. The SCF is composed of a cullin (Cdc53), SKP1, RBX1 and one member of a large family of proteins called F-box proteins. The function of the F-box protein is to interact with target proteins. In some cases, the stability of the F-box protein may regulate activity of the SCF complex. In addition, post-translational modification of the cullin subunit by the ubiquitin-like protein RUB/NEDD8 appears to regulate SCF function. In plants, the SCF has so far been implicated in floral development, circadian clock, and response to the plant growth regulators auxin and jasmonic acid.  相似文献   

9.
Jasmonates (JAs) regulate Arabidopsis thaliana wound and defence responses, pollen development, and stress-related growth inhibition. Significantly, each of these responses requires COI1, an F-box protein. Other F-box proteins interact with SKP1 and cullin proteins to form SCF complexes that selectively recruit regulatory proteins targeted for ubiquitination. To determine whether COI1 also functions in an SCF complex, we have characterized Arabidopsis proteins that bind to COI1. An Arabidopsis cDNA expression library was screened in yeast for clones that produce proteins which can bind to COI1. We recovered two SKP1 homologues and a histone deacetylase. The Arabidopsis F-box protein TIR1 interacted with SKP1 proteins, but not with the histone deacetylase. Mutant COI1 proteins revealed that the F-box is required for interaction with SKP1s, but that sequences in leucine-rich repeat domains are required for interaction with the histone deacetylase. Epitope-tagged COI1 was introduced into Arabidopsis plants and cell cultures. Co-immunoprecipitation experiments confirmed the interaction in planta of COI1 with SKP1-like proteins and histone deacetylase, and also indicated that COI1 interacted with cullin. These results suggest that COI1 forms an SCFCOI1 complex in vivo. COI1 is therefore expected to form a functional E3-type ubiquitin ligase in plants and to regulate expression of jasmonate responsive genes, possibly by targeted ubiquitination of a histone deacetylase.  相似文献   

10.
SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis   总被引:13,自引:0,他引:13  
Many key activators and inhibitors of cell division are targeted for degradation by a recently described family of E3 ubiquitin protein ligases termed Skp1-Cdc53-F-box protein (SCF) complexes. SCF complexes physically link substrate proteins to the E2 ubiquitin-conjugating enzyme Cdc34, which catalyses substrate ubiquitination, leading to subsequent degradation by the 26S proteasome. SCF complexes contain a variable subunit called an F-box protein that confers substrate specificity on an invariant core complex composed of the subunits Cdc34, Skp1 and Cdc53. Here, we review the substrates and pathways regulated by the yeast F-box proteins Cdc4, Grr1 and Met30. The concepts of SCF ubiquitin ligase function are illustrated by analysis of the degradation pathway for the G1 cyclin Cln2. Through mass spectrometric analysis of Cdc53 associated proteins, we have identified three novel F-box proteins that appear to participate in SCF-like complexes. As many F-box proteins can be found in sequence databases, it appears that a host of cellular pathways will be regulated by SCF-dependent proteolysis.  相似文献   

11.
12.
13.
The ubiquitin-proteasome system for protein degradation plays a major role in regulating cell function and many signaling proteins are tightly controlled by this mechanism. Among these, Regulator of G Protein Signaling 2 (RGS2) is a target for rapid proteasomal degradation, however, the specific enzymes involved are not known. Using a genomic siRNA screening approach, we identified a novel E3 ligase complex containing cullin 4B (CUL4B), DNA damage binding protein 1 (DDB1) and F-box protein 44 (FBXO44) that mediates RGS2 protein degradation. While the more typical F-box partners CUL1 and Skp1 can bind FBXO44, that E3 ligase complex does not bind RGS2 and is not involved in RGS2 degradation. These observations define an unexpected DDB1/CUL4B-containing FBXO44 E3 ligase complex. Pharmacological targeting of this mechanism provides a novel therapeutic approach to hypertension, anxiety, and other diseases associated with RGS2 dysregulation.  相似文献   

14.
Cul1 and Cul7 are cullin E3 ubiquitin ligase scaffold proteins. Cul1 is known to form a complex with the RING domain protein Rbx1 and one of approximately 70 different F-box proteins. F-box proteins function as substrate receptor subunits and recruit numerous substrates for poly-ubiquitination. Similarly to Cul1, Cul7 interacts with Rbx1, however, only one F-box protein, Fbxw8, has been shown to bind to Cul7. To date only few Cul7 E3 ubiquitin ligase substrates, including cyclin D1, IRS-1 and GRASP65, have been reported, and using Fbxw8 affinity purification, we were unable to identify additional substrate proteins. Here we provide evidence for a model in which Cul7-Rbx1 can promote the ubiquitination of Cul1 substrates by forming high order complexes with Cul1-Rbx1. Binding of Cul1-Rbx1 to Cul7-Rbx1 is mediated via heterodimerization of Fbxw8 with other F-box proteins which function to recruit substrates into the E3 ligase complex. The formation of this high order complex is likely to increase polyubiquitination efficiency.  相似文献   

15.
The Arabidopsis SLY1 (SLEEPY1) gene positively regulates gibberellin (GA) signaling. Positional cloning of SLY1 revealed that it encodes a putative F-box protein. This result suggests that SLY1 is the F-box subunit of an SCF E3 ubiquitin ligase that regulates GA responses. The DELLA domain protein RGA (repressor of ga1-3) is a repressor of GA response that appears to undergo GA-stimulated protein degradation. RGA is a potential substrate of SLY1, because sly1 mutations cause a significant increase in RGA protein accumulation even after GA treatment. This result suggests SCF(SLY1)-targeted degradation of RGA through the 26S proteasome pathway. Further support for this model is provided by the observation that an rga null allele partially suppresses the sly1-10 mutant phenotype. The predicted SLY1 amino acid sequence is highly conserved among plants, indicating a key role in GA response.  相似文献   

16.
The p38 MAPK signal transduction pathway plays an important role in inflammatory and stress responses. MAPKK6 (MKK6), a dual specificity protein kinase, is a p38 activator. Activation of the MKK6-p38 pathway is kept in check by multiple layers of regulations, including autoinhibition, dimerization, scaffold proteins, and Lys-63-linked polyubiquitination. However, the mechanisms underlying deactivation of MKK6-p38, which is crucial for maintaining the magnitude and duration of signal transduction, are not well understood. Lys-48-linked ubiquitination, which marks substrates for proteasomal degradation, is an important negative posttranslational regulatory machinery for signal pathway transduction. Here we report that the accumulation of F-box only protein 31 (FBXO31), a component of Skp1·Cul1·F-box protein E3 ligase, negatively regulated p38 activation in cancer cells upon genotoxic stresses. Our results show that FBXO31 binds to MKK6 and mediates its Lys-48-linked polyubiquitination and degradation, thereby functioning as a negative regulator of MKK6-p38 signaling and protecting cells from stress-induced cell apoptosis. Taken together, our findings uncover a new mechanism of deactivation of MKK6-p38 and substantiate a novel regulatory role of FBXO31 in stress response.  相似文献   

17.
A family of mammalian F-box proteins.   总被引:28,自引:0,他引:28  
  相似文献   

18.
19.
F-box proteins: the key to protein degradation   总被引:4,自引:0,他引:4  
Summary The eukaryotic protein degradation pathway involves the ubiquitin (Ub) modification of substrates targeted for degradation by the 26S proteasome. The addition of Ub, a process called ubiquitination, is mediated by enzymes including the E3 Ub ligases which transfer the Ub to targeted substrates. A major type of E3 Ub ligases, the SCF (Skp–Cullin–F-box) complex, is composed of four major components: Skp1, Cul1/Cdc53, Roc1/Rbx1/Hrt1, and an F-box protein. The F-box component of the SCF machineries is responsible for recognizing different substrates for ubiquitination. Interaction with components of the SCF complex is mediated through the F-box motif of the F-box protein while it associates with phosphorylated substrates through its second protein–protein interaction motif such as Trp–Asp (WD) repeats or leucine-rich repeats (LRRs). By targeting diverse substrates, F-box proteins exert controls over stability of proteins and regulate the mechanisms for a wide-range of cellular processes. Here we discuss the importance of F-box proteins by providing a general overview and examples of how F-box proteins function in various cellular settings such as tissue development, cell proliferation, and cell death, in the modeling organism Drosophila.  相似文献   

20.
The concentrations and functions of many cellular proteins are regulated by the ubiquitin pathway. Cullin family proteins bind with the RING-finger protein Roc1 to recruit the ubiquitin-conjugating enzyme (E2) to the ubiquitin ligase complex (E3). Cul1 and Cul7, but not other cullins, bind to an adaptor protein, Skp1. Cul1 associates with one of many F-box proteins through Skp1 to assemble various SCF-Roc1 E3 ligases that each selectively ubiquitinate one or more specific substrates. Here, we show that Cul3, but not other cullins, binds directly to multiple BTB domains through a conserved amino-terminal domain. In vitro, Cul3 promoted ubiquitination of Caenorhabditis elegans MEI-1, a katanin-like protein whose degradation requires the function of both Cul3 and BTB protein MEL-26. We suggest that in vivo there exists a potentially large number of BCR3 (BTB-Cul3-Roc1) E3 ubiquitin ligases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号