首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
SGT1 and Rar1 are important signaling components of resistance (R) gene-mediated plant innate immune responses. Here we report that SGT1 and Rar1 associate with the molecular chaperone Hsp90. In addition, we show that Hsp90 associates with the resistance protein N that confers resistance to tobacco mosaic virus. This suggests that Hsp90-SGT1-Rar1 and R proteins might exist in one complex. Suppression of Hsp90 in Nicotiana benthamiana plants shows that it plays an important role in plant growth and development. In addition, Hsp90 suppression in NN plants compromises N-mediated resistance to tobacco mosaic virus. Our results reveal a new role for SGT1- and Rar1-associated chaperone machinery in R gene-mediated defense signaling.  相似文献   

2.
Role of SGT1 in resistance protein accumulation in plant immunity   总被引:20,自引:0,他引:20  
A highly conserved eukaryotic protein SGT1 binds specifically to the molecular chaperone, HSP90. In plants, SGT1 positively regulates disease resistance conferred by many Resistance (R) proteins and developmental responses to the phytohormone, auxin. We show that silencing of SGT1 in Nicotiana benthamiana causes a reduction in steady-state levels of the R protein, Rx. These data support a role of SGT1 in R protein accumulation, possibly at the level of complex assembly. In Arabidopsis, two SGT1 proteins, AtSGT1a and AtSGT1b, are functionally redundant early in development. AtSGT1a and AtSGT1b are induced in leaves upon infection and either protein can function in resistance once a certain level is attained, depending on the R protein tested. In unchallenged tissues, steady-state AtSGT1b levels are at least four times greater than AtSGT1a. While the respective tetratricopeptide repeat (TPR) domains of SGT1a and SGT1b control protein accumulation, they are dispensable for intrinsic functions of SGT1 in resistance and auxin responses.  相似文献   

3.
SGT1 (for suppressor of G2 allele of skp1) and RAR1 (for required for Mla12 resistance) are highly conserved eukaryotic proteins that interact with the molecular chaperone HSP90 (for heat shock protein90). In plants, SGT1, RAR1, and HSP90 are essential for disease resistance triggered by a number of resistance (R) proteins. Here, we present structural and functional characterization of plant SGT1 proteins. Random mutagenesis of Arabidopsis thaliana SGT1b revealed that its CS (for CHORD-SGT1) and SGS (for SGT1 specific) domains are essential for disease resistance. NMR-based interaction surface mapping and mutational analyses of the CS domain showed that the CHORD II domain of RAR1 and the N-terminal domain of HSP90 interact with opposite sides of the CS domain. Functional analysis of the CS mutations indicated that the interaction between SGT1 and HSP90 is required for the accumulation of Rx, a potato (Solanum tuberosum) R protein. Biochemical reconstitution experiments suggest that RAR1 may function to enhance the SGT1-HSP90 interaction by promoting ternary complex formation.  相似文献   

4.
Ralstonia solanacearum is the causal agent of bacterial wilt disease. To better understand the molecular mechanisms involved in interaction between Nicotiana benthamiana and R. solanacearum, we focused on Hsp90, RAR1 and SGT1. Appearances of wilt symptom were significantly suppressed in Hsp90, RAR1 and SGT1-silenced plants compared with control plants. In RAR1-silenced plants, population of R. solanacearum increased in a similar manner to control plants. In contrast, multiplication of R. solanacearum was significantly suppressed in Hsp90 and SGT1-silenced plants. In addition, expression of PR genes were increased in Hsp90 and SGT1-silenced plants challenged with R. solanacearum. Therefore, RAR1 might be required for disease development or suppression of disease tolerance. These results also suggested that Hsp90 and/or SGT1 might play an important role in suppression of plant defenses leading to disease susceptibility and disease development.  相似文献   

5.
Accumulating evidence indicates that plant disease-resistance (R) proteins assemble in hetero-multimeric protein complexes in the absence of pathogens. Such complexes might enable the indirect recognition of pathogen effector molecules during attempted pathogen invasion. RAR1 and SGT1 are required for the function of most known R proteins. They interact with each other and with diverse protein complexes, which might explain their multi-functionality. The promiscuous behavior of RAR1 and SGT1 might be crucial for the formation and activation of R protein-containing recognition complexes as well as for regulating downstream signaling processes.  相似文献   

6.
Plant defense responses need to be tightly regulated to prevent auto-immunity, which is detrimental to growth and development. To identify negative regulators of Resistance (R) protein-mediated resistance, we screened for mutants with constitutive defense responses in the npr1-1 background. Map-based cloning revealed that one of the mutant genes encodes a conserved TPR domain-containing protein previously known as SRFR1 (SUPPRESSOR OF rps4-RLD). The constitutive defense responses in the srfr1 mutants in Col-0 background are suppressed by mutations in SNC1, which encodes a TIR-NB-LRR (Toll Interleukin1 Receptor-Nucleotide Binding-Leu-Rich Repeat) R protein. Yeast two-hybrid screens identified SGT1a and SGT1b as interacting proteins of SRFR1. The interactions between SGT1 and SRFR1 were further confirmed by co-immunoprecipitation analysis. In srfr1 mutants, levels of multiple NB-LRR R proteins including SNC1, RPS2 and RPS4 are increased. Increased accumulation of SNC1 is also observed in the sgt1b mutant. Our data suggest that SRFR1 functions together with SGT1 to negatively regulate R protein accumulation, which is required for preventing auto-activation of plant immunity.  相似文献   

7.
RAR1 and SGT1 are required for development and disease resistance in plants. In many cases, RAR1 and SGT1 regulate the resistance (R)-gene-mediated defense signaling pathways. Lr21 is the first identified NBS-LRR-type R protein in wheat and is required for resistance to the leaf rust pathogen. The Lr21-mediated signaling pathways require the wheat homologs of RAR1, SGT1, and HSP90. However, the molecular mechanisms of the Lr21-mediated signaling networks remain unknown. Here I present the DNA and protein sequences of TaRAR1 and TaSGT1, and demonstrate for the first time a direct protein-protein interaction between them.  相似文献   

8.
The conserved eukaryotic protein SGT1 (suppressor of G2 allele of skp1) participates in diverse physiological processes such as cell cycle progression in yeast, plant immunity against pathogens and plant hormone signalling. Recent genetic and biochemical studies suggest that SGT1 functions as a novel co-chaperone for cytosolic/nuclear HSP90 and HSP70 molecular chaperones in the folding and maturation of substrate proteins. Since proteins containing the leucine-rich repeat (LRR) protein-protein interaction motif are overrepresented in SGT1-dependent phenomena, we consider whether LRR-containing proteins are preferential substrates of an SGT1/HSP70/HSP90 complex. Such a chaperone organisation is reminiscent of the HOP/HSP70/HSP90 machinery which controls maturation and activation of glucocorticoid receptors in animals. Drawing on this parallel, we discuss the possible contribution of an SGT1-chaperone complex in the folding and maturation of LRR-containing proteins and its evolutionary consequences for the emergence of novel LRR interaction surfaces.Key words: heat shock protein, SGT1, co-chaperone, HSP90, HSP70, leucine-rich repeat, LRR, resistance, SCF, ubiquitinThe proper folding and maturation of proteins is essential for cell viability during de novo protein synthesis, translocation, complex assembly or under denaturing stress conditions. A complex machinery composed of molecular chaperones (heat-shock proteins, HSPs) and their modulators known as co-chaperones, catalyzes these protein folding events.1,2 In animals, defects in the chaperone machinery is implicated in an increasing number of diseases such as cancers, susceptibility to viruses, neurodegenerative disease and cystic fibrosis, and thus it has become a major pharmacological target.3,4 In plants, molecular genetic studies have identified chaperones and co-chaperones as components of various physiological responses and are now starting to yield important information on how chaperones work. Notably, processes in plant innate immunity rely on the HSP70 and HSP9057 chaperones as well as two recently characterised co-chaperones, RAR1 (required for Mla12 resistance) and SGT1 (suppressor of G2 allele of skp1).811SGT1 is a highly conserved and essential co-chaperone in eukaryotes and is organized into three structural domains: a tetratricopeptide repeat (TPR), a CHORD/SGT1 (CS) and an SGT1-specific (SGS) domain (Fig. 1A). SGT1 is involved in a number of apparently unrelated physiological responses ranging from cell cycle progression and adenylyl cyclase activity in yeast to plant immunity against pathogens, heat shock tolerance and plant hormone (auxin and jasmonic acid) signalling.79,12,13 Because the SGT1 TPR domain is able to interact with Skp1, SGT1 was initially believed to be a component of SCF (Skp1/Cullin/F-box) E3 ubiquitin ligases that are important for auxin/JA signalling in plants and cell cycle progression in yeast.13,14 However, mutagenesis of SGT1 revealed that the TPR domain is dispensable for plant immunity and auxin signalling.15 Also, SGT1-Skp1 interaction was not observed in Arabidopsis.13 More relevant to SGT1 functions appear to be the CS and SGS domains.16 The former is necessary and sufficient for RAR1 and HSP90 binding. The latter is the most conserved of all SGT1 domains and the site of numerous disabling mutations.14,16,17Open in a separate windowFigure 1Model for SGT1/chaperone complex functions in the folding of LRR-containing proteins. (A) The structural domains of SGT1, their sites of action (above) and respective binding partners (below) are shown. N- and C-termini are indicated. TPR, tetratricopeptide repeat; CS, CHORD/SGT1; SGS, SGT1-specific. (B) Conceptual analogy between steroid receptor folding by the HOP/chaperone machinery and LRR protein folding by the SGT1/chaperone machinery. LRR motifs are overrepresented in processes requiring SGT1 such as plant immune receptor signalling, yeast adenylyl cyclase activity and plant or yeast SCF (Skp1/Cullin/F-box) E3 ubiquitin ligase activities. (C) Opposite forces drive LRR evolution. Structure of LRRs 16 to 18 of the F-box auxin receptor TIR1 is displayed as an illustration of the LRR folds.30 Leucine/isoleucine residues (side chain displayed in yellow) are under strong purifying selection and build the hydrophobic LRR backbone (Left). By contrast, solvent-exposed residues of the β-strands define a polymorphic and hydrophilic binding surface conferring substrate specificity to the LRR (Right) and are often under diversifying selection.We recently demonstrated that Arabidopsis SGT1 interacts stably through its SGS domain with cytosolic/nuclear HSP70 chaperones.7 The SGS domain was both necessary and sufficient for HSP70 binding and mutations affecting SGT1-HSP70 interaction compromised JA/auxin signalling and immune responses. An independent in vitro study also found interaction between human SGT1 and HSP70.18 The finding that SGT1 protein interacts directly with two chaperones (HSP90/70) and one co-chaperone (RAR1) reinforces the notion that SGT1 behaves as a co-chaperone, nucleating a larger chaperone complex that is essential for eukaryotic physiology. A future challenge will be to dissect the chaperone network at the molecular and subcellular levels. In plant cells, SGT1 localization appears to be highly dynamic with conditional nuclear localization7 and its association with HSP90 was recently shown to be modulated in vitro by RAR1.16A co-chaperone function suits SGT1 diverse physiological roles better than a specific contribution to SCF ubiquitin E3 ligases. Because SGT1 does not affect HSP90 ATPase activity, SGT1 was proposed rather as a scaffold protein.16,19 In the light of our findings and earlier studies,20 SGT1 is reminiscent of HOP (Hsp70/Hsp90 organizing protein) which links HSP90 and HSP70 activities and mediates optimal substrate channelling between the two chaperones (Fig. 1B).21 While the contribution of the HSP70/HOP/HSP90 to the maturation of glucocorticoid receptors is well established,21 direct substrates of an HSP70/SGT1/HSP90 complex remain elusive.It is interesting that SGT1 appears to share a functional link with leucine-rich repeat- (LRR) containing proteins although LRR domains are not so widespread in eukaryotes. For example, plant SGT1 affects the activities of the SCFTIR1 and SCFCOI1 E3 ligase complexes whose F-box proteins contain LRRs.13 Moreover, plant intracellular immune receptors comprise a large group of LRR proteins that recruit SGT1.8,9 LRRs are also found in yeast adenylyl cyclase Cyr1p and the F-box protein Grr1p which is required for SGT1-dependent cyclin destruction during G1/S transition.12,14 Yeast 2-hybrid interaction assays also revealed that yeast and plant SGT1 tend to associate directly or indirectly with LRR proteins.12,22,23 We speculate that SGT1 bridges the HSP90-HSC70 chaperone machinery with LRR proteins during complex maturation and/or activation. The only other structural motif linked to SGT1 are WD40 domains found in yeast Cdc4p F-box protein and SGT1 interactors identified in yeast two-hybrid screens.12What mechanisms underlie a preferential SGT1-LRR interaction? HSP70/SGT1/HSP90 may have co-evolved to assist specifically in folding and maturation of LRR proteins. Alternatively, LRR structures may have an intrinsically greater need for chaperoning activity to fold compared to other motifs. These two scenarios are not mutually exclusive. The LRR domain contains multiple 20 to 29 amino acid repeats, forming an α/β horseshoe fold.24 Each repeat is rich in hydrophobic leucine/isoleucine residues which are buried inside the structure and form the structural backbone of the motif (Fig. 1C, left). Such residues are under strong purifying selection to preserve structure. These hydrophobic residues would render the LRR a possible HSP70 substrate.25 By contrast, hydrophilic solvent- exposed residues of the β strands build a surface which confers ligand recognition specificity of the LRRs (Fig. 1C). In many plant immune receptors for instance, these residues are under diversifying selection that is likely to favour the emergence of novel pathogen recognition specificities in response to pathogen evolution.26 The LRR domain of such a protein has to survive such antagonist selection forces and yet remain functional. Under strong selection pressure, LRR proteins might need to accommodate less stable LRRs because their recognition specificities are advantageous. This could be the point at which LRRs benefit most from a chaperoning machinery such as the HSP90/SGT1/HSP70 complex. This picture is reminiscent of the genetic buffering that HSP90 exerts on many traits to mask mutations that would normally be deleterious to protein folding and/or function, as revealed in Drosophila and Arabidopsis.27 It will be interesting to test whether the HSP90/SGT1/HSP70 complex acts as a buffer for genetic variation, favouring the emergence of novel LRR recognition surfaces in, for example, highly co-evolved plant-pathogen interactions.28,29  相似文献   

9.
10.
A gain-of-function mutation in resistance (R) gene SSI4 causes constitutive activation of defense responses, spontaneous necrotic lesion formation, enhanced resistance against virulent pathogens, and a severe dwarf phenotype. Genetic analysis revealed that ssi4-induced H(2)O(2) accumulation and spontaneous cell death require RAR1, whereas ssi4-mediated stunting is dependent on SGT1b. By contrast, both RAR1 and SGT1b are required in a genetically additive manner for ssi4-induced disease resistance, SA accumulation, and lesion formation after pathogen infection. These data point to cooperative yet distinct functions of RAR1 and SGT1b in responses conditioned by a deregulated nucleotide-binding leucine-rich repeat protein. We also found that RAR1 and SGT1b together contribute to basal resistance because an ssi4 rar1 sgt1b triple mutant exhibited enhanced susceptibility to virulent pathogen infection compared with wild-type SSI4 plants. All ssi4-induced phenotypes were suppressed when plants were grown at 22 degrees C under high relative humidity. However, low temperature (16 degrees C) triggered ssi4-mediated cell death via an RAR1-dependent pathway even in the presence of high humidity. Thus, multiple environmental factors impact on ssi4 signaling, as has been observed for other constitutive defense mutants and R gene-triggered pathways.  相似文献   

11.
SGT1(suppressor of the G2 allele of skpl)是多种植物抗病基因介导的抗病信号途径中的重要元件.该研究利用RT-PCR和RACE方法克隆出甘薯近缘野生种三浅裂野牵牛的SGT1基因,命名为ItSGT1.该基因含有一个长度为1 087 bp的开放阅读框,编码361个氨基酸,分子量约为40.1 kD,等电点为5.05.Blast及多序列比对分析表明,该基因与其他植物中的SGT1具有较高的相似性,且具有SGT1蛋白典型的功能域结构,即TPR区、VR1区、CS区、VR2区和SGS区.Southern杂交结果显示,SGT1基因在三浅裂野牵牛基因组中是多拷贝基因.组织特异性表达分析表明,ItSGT1基因在三浅裂野牵牛的根、茎和叶中均有表达.  相似文献   

12.
Gray WM 《Current biology : CB》2002,12(10):R352-R354
Plants have evolved intricate defence mechanisms to cope with the wide array of microbial pathogens they encounter. The identification of Sgt1 as an essential component of R gene-mediated disease resistance suggests that the ubiquitin protein degradation pathway plays an important role in plant defence.  相似文献   

13.
SGT1 (suppressor of G2 allele of Skp1) plays a role in various cellular processes including kinetochore assembly and protein ubiquitination by interacting with Skp1, a component of SCF E3 ligase complex. However, the function of SGT1 in cancer is largely unknown. Here, we showed that SGT1 was over-expressed in gastric cancer tissues and silencing of SGT1 by siRNAs significantly inhibited the growth and colony formation of gastric cancer cells. We further showed that SGT1 could regulate Akt signaling pathway by modulating Akt ser473 phosphorylation status. Moreover, we found that SGT1 was able to regulate the stability of PHLPP1, which is the direct phosphatase for Akt ser473 phosphorylation. Immunoprecipitation assay revealed that SGT1 could enhance the binding between PHLPP1 and beta-TrCP which has been documented to be able to target PHLPP1 for destruction. Decreased PHLPP1 in SGT1 over-expressed gastric cancer cells failed to dephosphorylate Akt and resulted in increased Akt ser473 phosphorylation and amplified downstream Akt signaling. Thus, our data revealed a previously uncovered role of SGT1 in gastric cancer development, and suggested that SGT1 could be a promising anti-cancer target to against gastric cancer.  相似文献   

14.
The conserved eukaryotic protein SGT1 (for Suppressor of G2 allele of skp1) has characteristics of an HSP90 (for heat shock protein 90 kD) cochaperone and in plants regulates hormone responses and Resistance gene-triggered immunity. We affinity-purified SGT1-interacting proteins from Arabidopsis thaliana leaf extracts and identified by mass spectrometry cytosolic heat shock cognate 70 (HSC70) chaperones as the major stable SGT1 interactors. Arabidopsis SGT1a and SGT1b proteins associate with HSC70 in vivo and distribute with HSC70 in the cytosol and nucleus. An intact C-terminal SGT1-specific (SGS) domain that is required for all known SGT1b functions in immunity and development is needed for HSC70 interaction and for the nuclear accumulation of SGT1b. Interaction assays of transiently expressed proteins or their domains in Nicotiana benthamiana point to a role of SGT1 as a HSC70 cofactor. Expression of two HSC70 isoforms is upregulated by pathogen challenge, and while loss of function of individual cytosolic HSC70 genes has no defense phenotype, HSC70-1 overexpression disables resistance to virulent and avirulent pathogens. Moreover, mutations in SGT1b lead to a similar degree of heat shock tolerance as deregulation of HSC70-1. We conclude that an HSC70-SGT1 chaperone complex is important for multiple plant environmental responses and that the evolutionarily conserved SGS domain of SGT1 is a key determinant of the HSC70-SGT1 association.  相似文献   

15.
Dutta S  Tan YJ 《Biochemistry》2008,47(38):10123-10131
The small glutamine-rich tetratricopeptide repeat protein (SGT) belongs to a family of cochaperones that interacts with both Hsp70 and Hsp90 via the so-called TPR domain. Here, we present the crystal structure of the TPR domain of human SGT (SGT-TPR), which shows that it contains typical features found in the structures of other TPR domains. Previous studies show that full-length SGT can bind to both Vpu and Gag of human immunodeficiency virus type 1 (HIV-1) and the overexpression of SGT in cells reduces the efficiency of HIV-1 particle release. We show that SGT-TPR can bind Vpu and reduce the amount of HIV-1 p24, which is the viral capsid, secreted from cells transfected with the HIV-1 proviral construct, albeit at a lower efficiency than full-length SGT. This indicates that the TPR domain of SGT is sufficient for the inhibition of HIV-1 particle release but the N- and/or C-terminus also have some contributions. The SGT binding site in Vpu was also identified by using peptide array and confirmed by GST pull-down assay.  相似文献   

16.
17.
18.
Resistance (R) genes have a proven record for protecting plants against biotic stress. A problem is parasite adaptation via Avirulence (Avr) mutations, which allows the parasite to colonize the R gene plant. Scientists hope to make R genes more durable by stacking them in a single cultivar. However, stacking assumes that R gene-mediated resistance has no fitness cost for the plant. We tested this assumption for wheat's resistance to Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae). Our study included ten plant fitness measures and four wheat genotypes, one susceptible, and three expressing either the H6, H9, or H13 resistance gene. Because R gene-mediated resistance has two components, we measured two types of costs: the cost of the constitutively-expressed H gene, which functions in plant surveillance, and the cost of the downstream induced responses, which were triggered by Hessian fly larvae rather than a chemical elicitor. For the constitutively expressed Hgene, some measures indicated costs, but a greater number of measures indicated benefits of simply expressing the H gene. For the induced resistance, instead of costs, resistant plants showed benefits of being attacked. Resistant plants were more likely to survive attack than susceptible plants, and surviving resistant plants produced higher yield and quality. We discuss why resistance to the Hessian fly has little or no cost and propose that tolerance is important, with compensatory growth occurring after H gene-mediated resistance kills the larva. We end with a caution: Given that plants were given good growing conditions, fitness costs may be found under conditions of greater biotic or abiotic stress.  相似文献   

19.
For security and stability: SGT1 in plant defense and development   总被引:1,自引:0,他引:1  
SGT1 (suppressor of G-two allele of SKP1) is highly conserved among all eukaryotes. In plants, SGT1 interacts with various proteins, including molecular chaperones (HSP70 and HSP90) and certain SCF ubiquitin ligases, and hence SGT1 likely functions in protein folding and stability. Since these protein complexes are involved in many aspects of plant biology, plants with a defective SGT1 display a plethora of phenotypic alterations. In this mini-review we highlight the interaction between SGT1 with other protein complexes and summarize the function of SGT1 in plant defense responses and development, including the recent advancements in the understanding of the role of SGT1 in jasmonic acid (JA) biosynthesis and signaling.Key words: SGT1, HSP90, RAR1, immunity, development, jasmonate, coronatine, pathogen, herbivore  相似文献   

20.
The Arabidopsis protein RPM1 activates disease resistance in response to Pseudomonas syringae proteins targeted to the inside of the host cell via the bacterial type III delivery system. We demonstrate that specific mutations in the ATP-binding domain of a single Arabidopsis cytosolic HSP90 isoform compromise RPM1 function. These mutations do not affect the function of related disease resistance proteins. RPM1 associates with HSP90 in plant cells. The Arabidopsis proteins RAR1 and SGT1 are required for the action of many R proteins, and display some structural similarity to HSP90 co-chaperones. Each associates with HSP90 in plant cells. Our data suggest that (i) RPM1 is an HSP90 client protein; and (ii) RAR1 and SGT1 may function independently as HSP90 cofactors. Dynamic interactions among these proteins can regulate RPM1 stability and function, perhaps similarly to the formation and regulation of animal steroid receptor complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号