首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cells change shape in response to diverse environmental and developmental conditions, creating topologies with micron-scale features. Although individual proteins can sense nanometer-scale membrane curvature, it is unclear if a cell could also use nanometer-scale components to sense micron-scale contours, such as the cytokinetic furrow and base of neuronal branches. Septins are filament-forming proteins that serve as signaling platforms and are frequently associated with areas of the plasma membrane where there is micron-scale curvature, including the cytokinetic furrow and the base of cell protrusions. We report here that fungal and human septins are able to distinguish between different degrees of micron-scale curvature in cells. By preparing supported lipid bilayers on beads of different curvature, we reconstitute and measure the intrinsic septin curvature preference. We conclude that micron-scale curvature recognition is a fundamental property of the septin cytoskeleton that provides the cell with a mechanism to know its local shape.  相似文献   

3.
Junctional adhesion molecules (JAMs) that are expressed in endothelial and epithelial cells and function in tight junction assembly, also perform important roles in testis where the closely-related JAM-A, JAM-B, and JAM-C are found. Disruption of murine Jam-B and Jam-C has varying effects on sperm development and function; however, deletion of Jam-A has not yet been studied. Here we show for the first time that in addition to expression in the Sertoli-Sertoli tight junctions in the seminiferous tubules, the ∼ 32 kDa murine JAM-A is present in elongated spermatids and in the plasma membrane of the head and flagellum of sperm. Deletion of Jam-A, using the gene trap technology, results in flagellar defects at the ultrastructural level. In Jam-A-deficient mice, which have reduced litter size, both progressive and hyperactived motility are significantly affected (P < 0.0001) before and, more severely, after capacitation. The findings show that JAM-A is involved in sperm tail formation and is essential for normal motility, which may occur via its signal transduction and protein phosphorylation properties. Detection of JAM-A in human sperm proteins indicates that its role may be conserved in sperm motility and that JAM-A may be a candidate gene for the analysis of idiopathic sperm motility defects resulting in male subfertility in the human population.  相似文献   

4.
Septins are filamentous GTPases that associate with cell membranes and the cytoskeleton and play essential roles in cell division and cellular morphogenesis. Septins are implicated in many human diseases including cancer and neuropathies. Small molecules that reversibly perturb septin organization and function would be valuable tools for dissecting septin functions and could be used for therapeutic treatment of septin-related diseases. Forchlorfenuron (FCF) is a plant cytokinin previously shown to disrupt septin localization in budding yeast. However, it is unknown whether FCF directly targets septins and whether it affects septin organization and functions in mammalian cells. Here, we show that FCF alters septin assembly in vitro without affecting either actin or tubulin polymerization. In live mammalian cells, FCF dampens septin dynamics and induces the assembly of abnormally large septin structures. FCF has a low level of cytotoxicity, and these effects are reversed upon FCF washout. Significantly, FCF treatment induces mitotic and cell migration defects that phenocopy the effects of septin depletion by small interfering RNA. We conclude that FCF is a promising tool to study mammalian septin organization and functions.  相似文献   

5.
Mammalian interphase and mitotic cells were analyzed for their cation composition using a three-dimensional high resolution scanning ion microprobe. This instrument maps the distribution of bound and unbound cations by secondary ion mass spectrometry (SIMS). SIMS analysis of cryofractured interphase and mitotic cells revealed a cell cycle dynamics of Ca2+, Mg2+, Na+, and K+. Direct analytical images showed that all four, but no other cations, were detected on mitotic chromosomes. SIMS measurements of the total cation content for diploid chromosomes imply that one Ca2+ binds to every 12.5-20 nucleotides and one Mg2+ to every 20-30 nucleotides. Only Ca2+ was enriched at the chromosomal DNA axis and colocalized with topoisomerase IIalpha (Topo II) and scaffold protein II (ScII). Cells depleted of Ca2+ and Mg2+ showed partially decondensed chromosomes and a loss of Topo II and ScII, but not hCAP-C and histones. The Ca2+-induced inhibition of Topo II catalytic activity and direct binding of Ca2+ to Topo II by a fluorescent filter-binding assay supports a regulatory role of Ca2+ during mitosis in promoting solely the structural function of Topo II. Our study directly implicates Ca2+, Mg2+, Na+, and K+ in higher order chromosome structure through electrostatic neutralization and a functional interaction with nonhistone proteins.  相似文献   

6.
The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells.  相似文献   

7.
The septins constitute a family of filament-forming proteins ubiquitous in eukaryotic species. We demonstrate here that the Saccharomyces cerevisiae septin, Cdc3, is a substrate of the cell cycle regulatory cyclin-dependent kinase (Cdk), Cdc28. Two serines near the C-terminus of Cdc3 are phosphorylated in a Cdc28-dependent manner. Analysis of a mutant allele that cannot be phosphorylated at these sites revealed an effect of Cdc28 phosphorylation of Cdc3 at the time of budding. Immunofluorescence analysis of wild-type and mutant Cdc3 indicated that prevention of phosphorylation at Cdc28-dependent sites impairs the disassembly of the old septin ring, which is inherited at mitosis but which usually disappears immediately prior to assembly of a new ring. Furthermore, immuno-fluorescence analysis of septin ring dynamics in a G1 cyclin (Cln) mutant suggests that G1 cyclin function is required for efficient ring disassembly. Thus, phosphorylation of Cdc3 by the Cdc28 kinase at the end of G1 may facilitate initiation of a new cell cycle by promoting disassembly of the obsolete septin ring from the previous cell cycle.  相似文献   

8.
Species lacking either 8 or 10 residues at the amino terminus of recombinant human interferon-gamma (Hu-IFN-gamma) were generated by limited digestion with Staphylococcus aureus V8 protease. A crude digest, consisting predominantly of these species, were completely inactive in inducing antiviral activity and the expression of HLA-DR antigens on HL-60 cells. The NH2-terminal deletion fragments were separated from residual intact IFN-gamma and from smaller polypeptides by reverse phase high performance liquid chromatography (HPLC) at pH 2.2. Intact IFN-gamma, purified by HPLC and subsequently refolded by dilution in 0.1 M sodium phosphate buffer (pH 7.5, 0.1% bovine serum albumin) was similar to untreated IFN-gamma in terms of binding to its cell surface receptor and in inducing antiviral activity and the expression of HLA-DR molecules. Conversely, biological activity was not detected in purified fragments 8-139 and 10-139. Examination of fragments 8-139 and 10-139 by far-UV circular dichroism revealed that cleavage of 8-10 residues at the amino terminus accompanied a dramatic change in secondary structure (6% alpha-helical and 36% beta-sheet content) as compared to untreated or HPLC-purified IFN-gamma (66% alpha-helix and 0% beta-sheet content). In summary, these results indicate that the amino terminus contributes to the structural integrity of the IFN-gamma molecule.  相似文献   

9.
BACKGROUND: Septins are members of a conserved family of GTPases found in organisms as diverse as budding yeast and mammals. In budding yeast, septins form hetero-oligomeric filaments that lie adjacent to the membrane at the mother-bud neck, whereas in mammals, they concentrate at the cleavage furrow of mitotic cells; in both cases, septins provide a required function for cytokinesis. What directs the location and determines the stability of septin filaments, however, remains unknown. RESULTS: Here we show that the mammalian septin H5 is associated with the plasma membrane and specifically binds the phospholipids phosphatidylinositol 4, 5-bisphosphate (PtdIns(4,5)P(2)) and phosphatidylinositol 3,4, 5-trisphosphate (PtdIns(3,4,5)P(3)). Deletion analysis revealed that this binding occurs at a site rich in basic residues that is conserved in most septins and is located adjacent to the GTP-binding motif. Phosphoinositide binding was inhibited by mutations within this motif and was also blocked by agents known to associate with PtdInsP(2) or by a peptide corresponding to the predicted PtdInsP(2)-binding sequence of H5. GTP binding and hydrolysis by H5 significantly reduced its PtdInsP(2)-binding capability. Treatment of cells with agents that occluded, dephosphorylated or degraded PtdInsP(2) altered the appearance and localization of H5. CONCLUSIONS: These results indicate that the interaction of septins with PtdInsP(2) might be an important cellular mechanism for the spatial and temporal control of septin accumulation.  相似文献   

10.
RNA editing produces mature mitochondrial mRNAs in trypanosomatids by the insertion and deletion of uridylates. It is catalyzed by a multiprotein complex, the editosome. We identified TbMP44 among the components of enriched editosomes by a combination of mass spectrometry and DNA sequence database analysis. Inactivation of an ectopic TbMP44 allele in cells in which the endogenous alleles were disrupted abolished RNA editing, inhibited cell growth, and was eventually lethal to bloodstream form trypanosomes. Loss of TbMP44 mRNA was followed initially by a reduction in the editosome sedimentation coefficient and then by the absence of other editosome proteins despite the presence of the mRNA. Reactivation of TbMP44 gene expression resulted in the resumption of cell growth and the reappearance of editosomes. These data indicate that TbMP44 is a component of the editosome that is essential for editing and critical for the structural integrity of the editosome.  相似文献   

11.
A cadherin family member, prCAD, was identified in retina cDNA by subtractive hybridization and high throughput sequencing. prCAD is expressed only in retinal photoreceptors, and the prCAD protein is localized to the base of the outer segment of both rods and cones. In prCAD(-/-) mice, outer segments are disorganized and fragmented, and there is progressive death of photoreceptor cells. prCAD is unlikely to be involved in protein trafficking between inner and outer segments, since phototransduction proteins appear to be correctly localized and the light responses of both rods and cones are only modestly compromised in prCAD(-/-) mice. These experiments imply a highly specialized cell biological function for prCAD and suggest that localized adhesion activity is essential for outer segment integrity.  相似文献   

12.
Anillin is a conserved component of the contractile ring that is essential for cytokinesis, and physically interacts with three conserved cleavage furrow proteins, F-actin, myosin II and septins in biochemical assays. We demonstrate that the Drosophila scraps gene, identified as a gene involved in cellularization, encodes Anillin. We characterize defects in cellularization, pole cell formation and cytokinesis in a series of maternal effect and zygotic anillin alleles. Mutations that result in amino acid changes in the C-terminal PH domain of Anillin cause defects in septin recruitment to the furrow canal and contractile ring. These mutations also strongly perturb cellularization, altering the timing and rate of furrow ingression. They cause dramatic vesiculation of new plasma membranes, and destabilize the stalk of cytoplasm that normally connects gastrulating cells to the yolk mass. A mutation closer to the N terminus blocks separation of pole cells with less effect on cellularization, highlighting mechanistic differences between contractile processes. Cumulatively, our data point to an important role for Anillin in scaffolding cleavage furrow components, directly stabilizing intracellular bridges, and indirectly stabilizing newly deposited plasma membrane during cellularization.  相似文献   

13.
How cells monitor the distribution of organelles is largely unknown. In budding yeast, the largest subdomain of the endoplasmic reticulum (ER) is a network of cortical ER (cER) that adheres to the plasma membrane. Delivery of cER from mother cells to buds, which is termed cER inheritance, occurs as an orderly process early in budding. We find that cER inheritance is defective in cells lacking Scs2, a yeast homologue of the integral ER membrane protein VAP (vesicle-associated membrane protein-associated protein) conserved in all eukaryotes. Scs2 and human VAP both target yeast bud tips, suggesting a conserved action of VAP in attaching ER to sites of polarized growth. In addition, the loss of either Scs2 or Ice2 (another protein involved in cER inheritance) perturbs septin assembly at the bud neck. This perturbation leads to a delay in the transition through G2, activating the Saccharomyces wee1 kinase (Swe1) and the morphogenesis checkpoint. Thus, we identify a mechanism involved in sensing the distribution of ER.  相似文献   

14.
Recently, protease 2A of human rhinovirus 2 (HRV2 2A) was shown to require a zinc ion for the formation of an active enzyme although zinc is not involved mechanistically. The data presented clearly show that the zinc ion bound to a picornaviral-specific motif represents an essential component of the native structure, probably representing a new Zn-binding motif. This structure, containing mostly beta-strand elements as shown by CD spectroscopy, changes drastically upon removal of zinc. The zinc-depleted form does represent an intermediate with mostly unchanged secondary structure, but not a fully denatured random coil as obtained by guanidinium hydrochloride. This is indicated by the blue-shifted fluorescence spectra and by CD. The native protein exhibited a cooperative phase transition at 53 degrees C. In contrast, the zinc-depleted form did not show any transition at all, again demonstrating the stabilizing role of the zinc ion. A structural intermediate was observed during thermal and pH denaturation that may represent a molten globule, as suggested by its ANS binding.  相似文献   

15.
LKB1 acts as a master upstream protein kinase regulating a number of kinases involved in diverse cellular functions. Recent studies have suggested a role for LKB1 in male fertility. Male mice with reduced total LKB1 expression, including the complete absence of the major splice variant in testis (LKB1(S)), are completely infertile. We sought to further characterise these mice and determine the mechanism underlying this infertility. This involved expression studies of LKB1 in developing germ cells, morphological analysis of mature spermatozoa and histological studies of both the testis and epididymis using light microscopy and transmission electron microscopy. We conclude that a defect in the release of mature spermatids from the seminiferous epithelium (spermiation) during spermatozoan development is a major cause of the infertility phenotype. We also present evidence that this is due, at least in part, to defects in the breakdown of the junctions, known as ectoplasmic specialisations, between the sertoli cells of the testis epithelium and the heads of the maturing spermatids. Overall this study uncovers a critical role for LKB1 in spermiation, a highly regulated, but poorly understood process vital for male fertility.  相似文献   

16.
The first visible event in prokaryotic cell division is the assembly of the soluble, tubulin-like FtsZ GTPase into a membrane-associated cytokinetic ring that defines the division plane in bacterial and archaeal cells. In the temperature-sensitive ftsZ84 mutant of Escherichia coli, this ring assembly is impaired at the restrictive temperature causing lethal cell filamentation. Here I present genetic and morphological evidence that a 2-fold higher dosage of the division gene zipA suppresses thermosensitivity of the ftsZ84 mutant by stabilizing the labile FtsZ84 ring structure in vivo. I demonstrate that purified ZipA promotes and stabilizes protofilament assembly of both FtsZ and FtsZ84 in vitro and cosediments with the protofilaments. Furthermore, ZipA organizes FtsZ protofilaments into arrays of long bundles or sheets that probably represent the physiological organization of the FtsZ ring in bacterial cells. The N-terminal cytoplasmic domain of membrane-anchored ZipA contains sequence elements that resemble the microtubule-binding signature motifs in eukaryotic Tau, MAP2 and MAP4 proteins. It is postulated that the MAP-Tau-homologous motifs in ZipA mediate its binding to FtsZ, and that FtsZ-ZipA interaction represents an ancient prototype of the protein-protein interaction that enables MAPs to suppress microtubule catastrophe and/or to promote rescue.  相似文献   

17.
JunB is essential for mammalian placentation   总被引:15,自引:0,他引:15       下载免费PDF全文
  相似文献   

18.
A study was made of the arrangement and specialties of distribution in the mammary secretory cells of albino mice of the following cytoskeleton ultrastructures: microtubules (MT), organization centres (MTOC), microfilaments (MF) and intermediate filaments (IF). During the last period of pregnancy and at different stages of lactation, for the alveolar epithelium the presence of a single material centrioles (CN) was shown in the region of the apical surface near dense intercellular contact. During pregnancy and especially at the beginning of lactation (1-2 days) the relatively large density of the MT was observed in both the cytoplasm of the secretory cells and the region near the CN. On the most hard days of lactation (10 day) the lowering of the number of all the observed structures was held in the majority of the cells. The MT was not observed near the CN. It appeared that the elimination of the MTOC activity during the most hard time of lactation is related to the decrease in the numbers of MT, MF and IF. The pattern of cytoskeleton reorganization, associated with the development of the functional activity of the observed cells, enables us to suggest a cooperative contribution of its base components in the formation of the secretory surface and in the carrying out of exocytosis.  相似文献   

19.
Cytokinesis in animal cells involves the contraction of an actomyosin ring formed at the cleavage furrow. Nuclear division, or karyokinesis, must be precisely timed to occur before cytokinesis in order to prevent genetic anomalies that would result in either cell death or uncontrolled cell division. The septin family of GTPase proteins has been shown to be important for cytokinesis although little is known about their role during this process. Here we investigate the distribution and function of the mammalian septin MSF. We show that during interphase, MSF colocalizes with actin, microtubules, and another mammalian septin, Nedd5, and coprecipitates with six septin proteins. In addition, transfections of various MSF isoforms reveal that MSF-A specifically localizes with microtubules and that this localization is disrupted by nocodazole treatment. Furthermore, MSF isoforms localize primarily with tubulin at the central spindle during mitosis, whereas Nedd5 is mainly associated with actin. Microinjection of affinity-purified anti-MSF antibodies into synchronized cells, or depletion of MSF by small interfering RNAs, results in the accumulation of binucleated cells and in cells that have arrested during cytokinesis. These results reveal that MSF is required for the completion of cytokinesis and suggest a role that is distinct from that of Nedd5.  相似文献   

20.
The structural integrity of the Golgi apparatus is known to be dependent on multiple factors, including the organizational status of microtubules, actin and the ankyrin/spectrin-based Golgi membrane skeleton, as well as vesicular trafficking and pH homeostasis. In this respect, our recently identified Golgi-associated anion exchanger, AE2, may also be of importance, since it potentially acts as a Golgi pH regulator and as a novel membrane anchor for the spectrin-based Golgi membrane skeleton. Here, we show that inhibition (>75%) of AE2 expression by antisense oligonucleotides in COS-7 cells results in the fragmentation of the juxtanuclear Golgi apparatus and in structural disorganization of the Golgi stacks, the cisternae becoming generally shorter, distorted, vesiculated and/or swollen. These structural changes occurred without apparent dissociation of the Golgi membrane skeletal protein Ankyrin(195), but were accompanied by the disappearance of the well-focused microtubule-organizing center (MTOC), suggesting the involvement of microtubule reorganization. Similar changes in Golgi structure and assembly of the MTOC were also observed upon transient overexpression of the EGFP-AE2 fusion protein. These data implicate a clear structural role for the AE2 protein in the Golgi and in its cytological positioning around the MTOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号