首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Issues in stem cell plasticity   总被引:7,自引:0,他引:7  
Experimental biology and medicine work with stem cells more than twenty years. The method discovered for in vitro culture of human embryonal stem cells acquired at abortions or from?surplus” embryos left from in vitro fertilization, evoked immediately ideas on the posibility to aim development and differentiation of these cells at regeneration of damaged tissues. Recently, several surprising observations proved that even tissue‐specific (multipotent) stem cells are capable, under suitable conditions of producing a while spectrum of cell types, regardless, whether these tissues are derived from the same germ layer or not. This ability is frequently called stem cell plasticity but other authors also use different names ‐?non‐orthodox differentiation” or?transdifferentiation”. In this paper we wish to raise several important questions and problems related to this theme. Let us remind some of them: Is it possible to force cells of one‐type tissue to lool and act as cells of another tissue? Are these changes netural? Could these trans‐formations be used to treat diseases? What about the bioethic issue? However, the most serious task “still remains to be soloved ‐ how to detect, harvestand culture stem cells for therapy of certain diseases”.  相似文献   

2.
Tendon stem cells are multi‐potent adult stem cells with broad differentiation plasticity that render them of great importance in cell‐based therapies for the repair of tendons. We called them tendon‐derived stem cells (TDSCs) to indicate the tissue origin from which the stem cells were isolated in vitro. Based on the work of other sources of MSCs and specific work on TDSCs, some properties of TDSCs have been characterized / implicated in vitro. Despite these findings, tendon stem cells remained controversial cells. This was because MSCs residing in different organs, although very similar, were not identical cells. There is evidence of differences in stem cell‐related properties and functions related to tissue origins. Similar to other stem cells, tendon stem cells were identified and characterized in vitro. Their in vivo identities, niche (both anatomical locations and regulators) and roles in tendons were less understood. This review aims to summarize the current evidence of the possible anatomical locations and niche signals regulating the functions of tendon stem cells in vivo. The possible roles of tendon stem cells in tendon healing and non‐healing are presented. Finally, the potential strategies for understanding the in vivo identity of tendon stem cells are discussed.  相似文献   

3.
Lgr5 marks adult stem cells in multiple adult organs and is a receptor for the Wnt‐agonistic R‐spondins (RSPOs). Intestinal, stomach and liver Lgr5+ stem cells grow in 3D cultures to form ever‐expanding organoids, which resemble the tissues of origin. Wnt signalling is inactive and Lgr5 is not expressed under physiological conditions in the adult pancreas. However, we now report that the Wnt pathway is robustly activated upon injury by partial duct ligation (PDL), concomitant with the appearance of Lgr5 expression in regenerating pancreatic ducts. In vitro, duct fragments from mouse pancreas initiate Lgr5 expression in RSPO1‐based cultures, and develop into budding cyst‐like structures (organoids) that expand five‐fold weekly for >40 weeks. Single isolated duct cells can also be cultured into pancreatic organoids, containing Lgr5 stem/progenitor cells that can be clonally expanded. Clonal pancreas organoids can be induced to differentiate into duct as well as endocrine cells upon transplantation, thus proving their bi‐potentiality.  相似文献   

4.
The statins (3‐hydroxy‐3‐methylglutaryl coenzyme A reductase inhibitors) were proven to be effective antilipid agents against cardiovascular disease. Recent reports demonstrate an anticancer effect induced by the statins through inhibition of cell proliferation, induction of apoptosis, or inhibition of angiogenesis. These effects are due to suppression of the mevalonate pathway leading to depletion of various downstream products that play an essential role in cell cycle progression, cell signaling, and membrane integrity. Recent evidence suggests a shared genomic fingerprint between embryonic stem cells, cancer cells, and cancer stem cells. Activation targets of NANOG, OCT4, SOX2, and c‐MYC are more frequently overexpressed in certain tumors. In the absence of bona fide cancer stem cell lines, human embryonic stem cells, which have similar properties to cancer and cancer stem cells, have been an excellent model throwing light on the anticancer affects of various putative anticancer agents. It was shown that key cellular functions in karyotypically abnormal colorectal and ovarian cancer cells and human embryonic stem cells are inhibited by the statins and this is mediated via a suppression of this stemness pathway. The strategy for treatment of cancers may thus be the targeting of a putative cancer stem cell within the tumor with specific agents such as the statins with or without chemotherapy. The statins may thus play a dual prophylactic role as a lipid‐lowering drug for the prevention of heart disease and as an anticancer agent to prevent certain cancers. This review examines the relationship between the statins, stem cells, and certain cancers. J. Cell. Biochem. 106: 975–983, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Mesenchymal stem cells (MSCs) are a potential novel delivery system for cell‐based gene therapies. Although tumour necrosis factor (TNF)‐α has been shown to have antitumour activity, its use in therapy is limited by its systemic toxicity. For the present study, we designed lentivirus‐mediated signal peptide TNF‐α‐Tumstatin45–132‐expressing mesenchymal stem cells (SPTT‐MSCs) as a novel anti‐cancer approach. We evaluated the effects of this approach on human prostate cancer cells (PC3 and LNCaP) by co‐culturing them with either SPTT‐MSCs or supernatants from their culture medium in vitro. The antitumour effects and possible mechanisms of action of SPTT‐MSCs were then determined in PC3 cells in vivo. The results showed that efficient TNF‐α‐Tumstatin45–132‐expressing MSCs had been established, and demonstrated that SPTT‐MSCs inhibited the proliferation of and induced apoptosis in prostate cancer cells and xenograft tumours. As would be expected, given the properties of the individual proteins, the TNF‐α‐Tumstatin45–132 fusion exerted potent cytotoxic effects on human prostate cancer cells and tumours via the death receptor‐dependent apoptotic pathway and via antiangiogenic effects. Our findings suggest that SPTT‐MSCs have significant activity against prostate cancer cells, and that they may represent a promising new therapy for prostate cancer.  相似文献   

6.
Morbidity and mortality from cirrhosis is increasing rapidly in the world. Currently, orthotopic liver transplantation is the only definitive therapeutic option. However, its clinical use is limited, because of poor long‐term graft survival, donor organ shortage and high costs associated with the procedure. Stem cell replacement strategies are therefore being investigated as an attractive alternative approach to liver repair and regeneration. In this review we discuss recent preclinical and clinical investigations that explore the therapeutic potential of stem cells in repair of liver injuries. Several types of stem cells. including embryonic stem cells, haematopoietic stem cells and mesenchymal stem cells, can be induced to differentiate into hepatocyte‐like cells by defined culture conditions in vitro. Stem cell transplantation has been shown to significantly improve liver function and increase animal survival in experimentally‐induced liver‐injury models. Moreover, several pilot clinical studies have reported encouraging therapeutic effects in patients treated with stem cells. Although there remain many unresolved issues, the available data support the notion that stem cell technology may lead to the development of effective clinical modalities for human liver diseases.  相似文献   

7.
Understanding how stem cells are maintained in their microenvironment (the niche) is vital for their application in regenerative medicine. Studies of Drosophila male germline stem cells (GSCs) have served as a paradigm in niche-stem cell biology. It is known that the BMP and JAK-STAT pathways are necessary for the maintenance of GSCs in the testis (Kawase et al., 2004; Kiger et al., 2001; Schulz et al., 2004; Shivdasani and Ingham, 2003; Tulina and Matunis, 2001). However, our recent work strongly suggests that BMP signaling is the primary pathway leading to GSC self-renewal (Leatherman and DiNardo, 2010). Here we show that magu controls GSC maintenance by modulating the BMP pathway. We found that magu was specifically expressed from hub cells, and accumulated at the testis tip. Testes from magu mutants exhibited a reduced number of GSCs, yet maintained a normal population of somatic stem cells and hub cells. Additionally, BMP pathway activity was reduced, whereas JAK-STAT activation was retained in mutant testes. Finally, GSC loss caused by the magu mutation could be suppressed by overactivating the BMP pathway in the germline.  相似文献   

8.
The major role of radial glial cells in neuronal development is to provide support and guidance for neuronal migration. In vitro, neurons, astrocytes and oligodendrocytes have also been generated from neural stem cells and embryonic stem cells, but the generation of radial glial cells in vitro has not yet been reported. Since radial glial cells can lead to neurons and astrocytes during brain development, neurogenesis and gliogenesis of stem cells in vitro may at least in part also utilize the same mechanisms. To test this hypothesis, we utilized five different clones of embryonic (ES) and embryonal carcinoma (EC) stem cell lines to investigate the differentiation of radial glial cells during in vitro neural differentiation. Here, we demonstrate that radial glial cells can be generated from ES/EC cell lines. These ES/EC cell‐derived radial glial cells are similar in morphology to radial glial cells in vivo. They also express several cytoskeletal markers that are characteristics of radial glial cells in vivo. The processes of these in vitro‐generated radial glial cells are organized into scaffolds that appear to support the migration of newly generated neurons in culture. Like radial glial cells in vivo, they appear to differentiate subsequently into astrocytes. Differentiation of radial glial cells may be a common pathway during in vitro neural differentiation of ES cells. This novel in vitro model system may facilitate the investigation of regulation of radial glial cell differentiation and its biological function. Acknowledgements: Supported by USPHS Grant NS11853 and a grant from the Children's Medical Research Foundation.  相似文献   

9.
Biosynthesis of steroidal plant hormones, brassinosteroids, was studied using the cell culture system of Catharanthus roseus. Feeding labeled compounds of possible intermediates to the cultured cells, followed by analyzing the metabolites by gas chromatography-mass spectrometry disclosed the pathways from a plant sterol, campesterol, to brassinolide. There are two pathways, named the early C6-oxidation pathway and late C6-oxidation pathway, both of which would be operating in a wide variety of plants. Recent findings of brassinosteroid-deficient mutants of Arabidopsis and the garden pea by several groups, and the possible blocked steps of the mutants in the biosynthetic pathways are also introduced.  相似文献   

10.
Different types of stem cells have been investigated for applications in drug screening and toxicity testing. In order to provide sufficient numbers of cells for such in vitro applications a scale‐up of stem cell culture is necessary. Bioreactors for dynamic three‐dimensional (3D) culture of growing cells offer the option for culturing large amounts of stem cells at high densities in a closed system. We describe a method for periodic harvesting of pluripotent stem cells (PSC) during expansion in a perfused 3D hollow‐fiber membrane bioreactor, using mouse embryonic stem cells (mESC) as a model cell line. A number of 100 × 106 mESC were seeded in bioreactors in the presence of mouse embryonic fibroblasts (MEF) as feeder cells. Over a cultivation interval of nine days cells were harvested by trypsin perfusion and mechanical agitation every second to third culture day. A mean of 380 × 106 mESC could be removed with every harvest. Subsequent to harvesting, cells continued growing in the bioreactor, as determined by increasing glucose consumption and lactate production. Immunocytochemical staining and mRNA expression analysis of markers for pluripotency and the three germ layers showed a similar expression of most markers in the harvested cells and in mESC control cultures. In conclusion, successful expansion and harvesting of viable mESC from bioreactor cultures with preservation of sterility was shown. The present study is the first one showing the feasibility of periodic harvesting of adherent cells from a continuously perfused four‐compartment bioreactor including further cultivation of remaining cells. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:141–151, 2016  相似文献   

11.
Casein Kinase I (CKI) is a conserved component of the Wnt signaling pathway, which regulates cell fate determination in metazoans. We show that post-embryonic asymmetric division and fate specification of C. elegans epidermal stem cells are controlled by a non-canonical Wnt/b-catenin signaling pathway, involving the b-catenins WRM-1 and SYS-1, and that C. elegans kin-19/CKIa functions in this pathway. Furthermore, we find that kin-19 is the only member of the Wnt asymmetry pathway that functions with, or in parallel to, the heterochronic temporal patterning pathway to control withdrawal from self-renewal and subsequent terminal differentiation of epidermal stem cells. We show that, except in the case of kin-19, the Wnt asymmetry pathway and the heterochronic pathway function separately and in parallel to control different aspects of epidermal stem cell fate specification. However, given the function of kin-19/CKIa in both pathways, and that CKI, Wnt signaling pathway and heterochronic pathway genes are widely conserved in animals, our findings suggest that CKIa may function as a regulatory hub through which asymmetric division and terminal differentiation are coordinated in adult stem cells of vertebrates.  相似文献   

12.
Ex vivo expansion of hematopoietic stem cells in bioreactors   总被引:2,自引:0,他引:2  
  相似文献   

13.
The stem/progenitor cells in the murine mammary gland are a highly dynamic population of cells that are responsible for ductal elongation in puberty, homeostasis maintenance in adult, and lobulo-alveolar genesis during pregnancy. In recent years understanding the epithelial cell hierarchy within the mammary gland is becoming particularly important as these different stem/progenitor cells were perceived to be the cells of origin for various subtypes of breast cancer. Although significant advances have been made in enrichment and isolation of stem/progenitor cells by combinations of antibodies against cell surface proteins together with flow cytometry, and in identification of stem/progenitor cells with multi-lineage differentiation and self-renewal using mammary fat pad reconstitution assay and in vivo genetic labeling technique, a clear understanding of how these different stem/progenitors are orchestrated in the mammary gland is still lacking. Here we discuss the different in vivo and in vitro methods currently available for stem/progenitor identification, their associated caveats, and a possible new hierarchy model to reconcile various putative stem/progenitor cell populations identified by different research groups.  相似文献   

14.
Cancers are thought to be the result of accumulated gene mutations in cells. Carcinomas, which are cancers arising from epithelial tissues usually go through several stages of development: atypical hyperplasia, carcinoma in situ and then invasive carcinoma, which might further metastasize. However, we think that the present pathological data are enough to prove that there might be an alternative way of carcinogenesis. We propose that majority of invasive cancers arise in the connective tissue stroma de novo, from the misplaced epithelial stem cells which come to the wrong land of connective tissue stroma by accident. The in situ carcinomas, which are mostly curable, should not be considered genuine cancer, but rather as quasi‐cancer. We design this new theory of carcinogenesis as the stem cell misplacement theory (SCMT). Our SCMT theory chains together other carcinogenesis theories such as the inflammation‐cancer chain, the stem cell theory and the tissue organization field theory. However, we deny the pathway of somatic mutation theory as the major pathway of carcinogenesis.  相似文献   

15.
Growing studies have emerged on adipose‐derived stem cells (ADSCs), which hold the potential for cell‐based therapy in diseased injured hearts. Apart from their differentiation pluripotency, such benefits also result from the ability of paracrine. The results of this study showed that after a 24‐h hypoxia culture, ADSCs secreted amplified quantities of hepatocyte growth factor, interleukin‐1, vascular endothelial growth factor‐A, fibroblast growth factor‐2, and transforming growth factor‐β, all of which increased statistically compared with normoxia cultures. Resultantly, conditioned media (CM) from hypoxia‐treated ADSCs can promptly improve cardiac function in in vivo infarction model as well as ameliorate apoptosis of cardiomyocytes subjected to hypoxia/reoxygenation conditions, accompanied by changes of JNK signal activation. While SP600125, a specific JNK pathway inhibitor, partly decreased cardiac cytoprotection assessed by incremental caspase‐3 activation and subsequent TUNEL index, which led to no significantly different outcome between CM from ADSCs in normoxia culture and those in hypoxia culture. These data suggested that, in response to hypoxia, ADSCs could amplify expression of several protective soluble factors, which mediate direct cytoprotection. Furthermore, the improvement for impaired cardiomyocytes treated by hypoxia‐induced ADSCs‐CM was significant in part because of the involvement of the JNK signal pathway. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The potential clinical use of stem cells for cell transplantation therapies to replace defective genes in myopathies is an area of intense investigation. Precursor cells derived from non-muscle tissue with myogenic potential have been identified in many tissues, including bone marrow and dermis, although the status of these putative stem cells requires clarification. The incorporation of circulating bone-marrow derived stem cells into regenerating adult skeletal muscle has been demonstrated in mice but the contribution of donor cells is so minimal that it would appear clinically irrelevant at this stage. The possibility of a true stem cell subpopulation within skeletal muscle that replenishes the satellite cells (conventional muscle precursors on the surface of myofibres) is also very attractive as a superior source of myoblasts for muscle construction. A full understanding of the intrinsic factors (i.e. gene expression within the stem cell) and extrinsic factors (i.e. signals from the external environment) which control the commitment of stem cells to the myogenic lineage, and the conditions which favour stem cell expansion in vivo is required before stem cells can be seriously considered for clinical cell therapy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Summary TheManduca sexta (L.) [Lepidoptera: Sphingidae] andHeliothis virescens (F.) [Lepidoptera: Noctuidae] midguts consist of a pseudostratified epithelium surrounded by striated muscle and tracheae. This epithelium contains goblet, columnar, and basal stem cells. The stem cells are critically important in that they are capable of massive proliferation and differentiation. This growth results in a fourfold enlargement of the midgut at each larval molt. The stem cells are also responsible for limited cell replacement during repair. While the characteristics of the stem cell population vary over the course of an instar, stem cells collected early in an instar and those collected late can start in vitro cultures. Cultures of larval stem, goblet, and columnar cells survive in vitro for several mo through proliferation and differentiation of the stem cells. One of the two polypeptide differentiation factors which have been identified and characterized from the culture medium has now been shown to be present in midgut in vivo. Thus the ability to examine lepidopteran midgut stem cell growth in vitro and in vivo is proving to be effective in determining the basic features of stem cell action and regulation. Mention of any product in this publication does not imply endorsement by the USDA.  相似文献   

18.
Abstract

Research involving differentiated embryonic stem (ES) cells may revolutionize the study of liver disease, improve the drug discovery process, and assist in the development of stem-cell-based clinical therapies. Generation of ES cell-derived hepatic tissue has benefited from an understanding of the cytokines, growth factors and biochemical compounds that are essential in liver development, and this knowledge has been used to mimic some aspects of embryonic development in vitro. Although great progress has been made in differentiating human ES cells into liver cells, current protocols have not yet produced cells with the phenotype of a mature hepatocyte. There is a of disease models have been examined concerning whether stem cells can correct liver disease. It is a bit premature to conclude that hepatocytes can be generated from non-hepatic cells in culture that will be clinically useful. Standard criteria will need to be developed to assess the extent to which human stem cell-derived hepatocytes have been produced.  相似文献   

19.
Freshly isolated mouse prostate epithelial cells regenerate fully differentiated prostate tissue when combined with embryonic urogenital sinus mesenchyme and grafted in vivo. We show here that this regenerative capacity, which has been attributed to a small population of pleuripotential progenitor epithelial cells, is rapidly lost when the cells are placed in monolayer culture but can be maintained by culture in anchorage-independent conditions. Epithelial cells placed in anchorage-independent culture formed proliferating spheres that could be serially passaged and exhibited increased expression of putative stem cell markers as compared to cells grown in monolayer culture. Epithelial cells isolated from the fetal urogenital sinus, the newborn, and adult prostate formed spheres with similar efficiency, while cells isolated from the post-castration prostate exhibited significantly higher sphere-forming abilities. When passaged spheres were recombined with E17 rat urogenital sinus mesenchyme and grafted in vivo, they generated fully differentiated mouse prostate glandular epithelium containing both p63+ basal cells and p63− luminal cells and expressing a variety of prostate-specific and terminal differentiation markers.  相似文献   

20.
Plant somatic cells have the capability to switch their cell fates from differentiated to undifferentiated status under proper culture conditions, which is designated as totipotency. As a result, plant cells can easily regenerate new tissues or organs from a wide variety of explants. However, the mechanism by which plant cells have such remarkable regeneration ability is still largely unknown. In this study, we used a set of meristem-specific marker genes to analyze the patterns of stem cell differentiation in the processes of somatic embryogenesis as well as shoot or root organogenesis in vitro. Our studies furnish preliminary and important information on the patterns of the de novo stem cell differentiation during various types of in vitro organogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号