首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We could demonstrate that greening of primary bean leaves in etiolated seedlings of Phaseolus vulgaris cv. Limburg can be controlled by a selective light-pretreatment of the embryonic axis. This light-induced interorgan synergism proved to be a phytochrome-mediated process. The red/farred photoreversible effect on the embryonic axis seems to be primarily linked to changes in the energy metabolism of the primary leaves. Phototransformation of the protochlorophyll present and pigment synthesis are very dependent upon an adequate supply of biochemical energy. When the embryonic axis is selectively pre-exposed to red light for a short time, respiration is markedly enhanced in the leaves and photosynthesis starts immediately upon illumination of the etiolated leaves after an incubation period of optimal length in the dark. The stimulatory effect of the red pretreatment on leaf respiration and photosynthetic capacity could be abolished to the level of the dark controls by a subsequent far-red irradiation on the embryonic axis. It is therefore postulated that phytochrome plays a regulatory role in interorgan cooperation. The metabolic changes involved in photomorphogenesis of etiolated seedlings are closely related to changes in energy production. Our data indicate that the primary act of phytochrome becomes operative at the biochemical level by its directional influence on the energy balance of the cell and coordinates the use of metabolic energy within a tissue and between organs.  相似文献   

2.
After 7 days of germination in the dark, the three sections of pea seedlings studied (cotyledons, stems, and young leaves) are rich in linoleic acid; after illumination of the seedlings a very significant increase in linolenic acid is observed in the young leaves section, whereas only small variations are noted in the fatty acid composition of the other sections. The increase in linolenic acid results from the increase in galactolipid content of the young leaves; these already linolenic acid-rich galactolipids are present but only in small amounts in the etiolated seedlings (10% of total lipid).  相似文献   

3.
Water stress retards accumulation of chlorophyll and chlorophylla/b protein complex during greening of barley seedlings in light.The rate of 2,6-dichlorophenol indophenol (DCPIP) photoreductionin isolated chloroplast which decreases under water stress isenhanced significantly in the presence of electron donors, diphenylcarbazide (DPQ) and Mn2+. Under water stress, the decrease ofthe rate of oxygen evolution measured in continuous white lightwas 40–73% and that of oxygen uptake (as a measure ofelectron transport through PS I from reduced DCPIP) was onlyabout 20%. During greening, under water stress, (i) a differentialinhibition of PS II biosynthesis as compared to PS I occurs,(ii) the site of electron donation by DPC seems to be closerto the reaction center ofPS II, (iii) the oxidizing side ofPS II near the oxygen-evolving system is affected maximallyby water stress. (Received March 11, 1980; Accepted November 13, 1980)  相似文献   

4.
Biogenesis of the pigment apparatus was studied in coleoptiles of postetiolated barley seedlings (Hordeum vulgare L.) and triticale (Triticale), differing in chlorophyll content, during growing in a “ light-darkness” regime with a 16-h photoperiod. Photoactive protochlorophyllide with a fluorescence maximum at 655 nm (Pchlide655), which accumulates in coleoptiles of etiolated seedlings, was converted in the light into a chlorophyll pigment with a fluorescence maximum at 690 nm (excitation at 440 nm, temperature ?196°C). The spectral transition 690 nm → 675 nm forms was completed in darkness for 15 min illumination. There was almost no resynthesis of new portions of Pchlide655 in coleoptiles under darkness conditions, even after a 5–6-h darkness period after brief illumination of seedlings with flashes of white light. Chlorophyllide (Chlide) formed from Pchlide655 was not esterified and was destroyed both in the light (4 h, 1.0–1.5 klx) and darkness. In coleoptiles of greening etiolated seedlings, chlorophyll formation started only by 24 h of illumination. The instability of the chlorophyll pigment formed after etiolation indicates that plastids of coleoptiles do not contain the system of chlorophyll biosynthesis centers typical of leaves, which are bound to membranes and protect pigment from destruction.  相似文献   

5.
The pigment changes that occur during transformation of etioplaststo fully developed chloroplasts have been studied in seedlingsof barley (Hordeum vulgare L.) by greening with white lightof low (15–25 µmol m–2 s–1) and medium(150 µmol m–2 s–1) intensity. At least 24h longer was required in the low light regime for the same concentrationof pigment to be accumulated in the seedlings. The increasein pigment content was mainly due to the synthesis of chlorophyllsa and b. Of the carotenoids present, the increases in the levelsof neoxanthin and, especially, ß-carotene were muchgreater than those observed for the other carotenoids. Levelsof lutein also increased but this change was small by comparisonto those observed for neoxanthin and ß-carotene. Inthe long-term the concentration of violaxanthin remained unalteredalthough significant transient changes were recorded. The levelsof antheraxanthin and zeaxanthin were markedly reduced duringgreening. The rate of pigment synthesis decreased with increasingcell age, i.e. from the base to the tip of the primary leaf.Overall, carotenoid levels increased by approximately 100% atthe base of the seedling but hardly at all at the tip. Key words: Hordeum vulgare, carotenoids, violaxanthin-cycle, etiolation  相似文献   

6.
The development of the lipid synthesizing system in Avena leafsections was examined in connection with carbon fixation duringthe greening of etiolated seedlings under light. During theinitial 2 h illumination there was a low level of CO2 fixationby PEP carboxylation, but its products, malate and citrate,did not serve as a carbon source for lipid synthesis, althoughlipid synthesis from acetate had already been established. Withthe initiation of Calvin cycle activity after the initial 2h illumination, lipid synthesis began, with CO2 fixed by RuBPcarboxylation serving exclusively as the carbon source. Fattyacid synthesis in the leaves during the initial 3 h illumination,unlike the fatty acid synthesis thereafter, was insensitiveto thiolactomycin, an inhibitor of type II fatty acid synthetasecontained in the plastids, and was not dependent on light, incontrast to light-dependent activity in greened leaves. The distribution of 14C incorporated into lipid molecules fromNaH14CO3 showed an equal ratio of 14C in fatty acid, glyceroland choline moieties of labeled phosphatidylcholine, but a denserradioactivity in the galactose moiety than in the residual moietyof mono- and di-galactosyldiacylglycerols. This suggests a regulatedsupply of glycerol, choline and fatty acid moieties for phosphatidylcholinesynthesis, and an excess supply of galactose to diacylglycerolmoiety for galactosyldiacylglycerol synthesis in Avena leaves. (Received October 31, 1984; Accepted January 25, 1985)  相似文献   

7.
黄化水稻幼苗转绿期AOX1基因家族的表达与功能分析   总被引:1,自引:0,他引:1  
完全黄化的水稻幼苗叶片在持续光照下总呼吸速率、交替途径的速率以及交替途径在总呼吸中的比值均上升,但以水稻AOX1基因家族3个成员的特异性片段为探针,仅观察到其中AOX1c转录本的增加。交替途径的专一性抑制剂SHAM可以降低水稻幼苗在持续光照过程中的相对光合放氧速率与叶绿素含量。同时,水稻黄化幼苗光照前黑暗处理时间越长,在恢复光照后交替途径能力的增加越显著,表现了转绿进程与交替途径之间的相关性。推测加强交替途径可能是植物缓和能量和物质需求矛盾的一个重要调控机制。  相似文献   

8.
Inter-organ control of greening in etiolated cucumber (Cucumis sativus L. cv. Aonagajibae) cotyledons was investigated. Four- or six-day-old excised or intact etiolated cucumber cotyledons were illuminated under aerobic conditions. Excised cotyledons without hypocotyl hooks produced chlorophyll without a prolonged lag phase and the rate of chlorophyll formation was not depressed if they were illuminated immediately after excision. If the excised cotyledons were incubated in the dark before illumination, chlorophyll accumulation at the end of 6 h of continuous illumination was remarkably lowered as the dark period lengthened, especially in 6-day-old cotyledons. The rapid loss of chlorophyll-forming capacity of excised cotyledons during dark preincubation suggests a stimulatory effect of hypocotyls on the greening in cotyledons. The treatment of excised cotyledons with bleeding sap in the dark for 18 h resulted in the promotion of chlorophyll formation during subsequent continuous illumination. Partial fractionation of bleeding sap with organic solvents and paper chromatography indicates that the active substances showed the same behavior as cytokinins. These facts add weight to the hypothesis that cytokinins from roots flow into cotyledons and stimulate greening.  相似文献   

9.
Etiolated Avena sativa L. leaves were fed with [l-14C]acetatefor 20 h in the dark and labeled fatty acids in glycerolipidswere chased during 24 h in the light (greening condition) orin the dark, to determine the light effect on the fatty aciddesaturation. Oleate decrease in phosphatidylcholine was thesame in the light and in the dark, showing that oleate desaturationis independent of light (or greening). Linoleate desaturationin galactolipids, especially in monogalactosyl diacylglycerol,was enhanced by light and palmitate desaturation to hexadecenoatein phosphatidylglycerol was strictly light-dependent. (Received May 11, 1983; Accepted August 16, 1983)  相似文献   

10.
11.
12.
以菜豆黄化幼苗作为试验材料,探讨了铅(Pb)或PEG(聚乙二醇)胁迫下交替呼吸途径在植物转绿过程中对叶绿素含量以及叶绿素荧光特性的影响,以阐明逆境胁迫下植物交替呼吸途径的生理学作用。结果显示:(1)与菜豆黄化幼苗正常转绿过程(对照)相比,Pb或PEG胁迫导致菜豆黄化幼苗的叶绿素含量积累延迟,使叶片PSⅡ潜在最大光化学量子效率(Fv/Fm)、光适应下最大光化学效率(Fv′/Fm′)、PSⅡ光适应下实际光化学效率(Y(Ⅱ))和光化学荧光猝灭系数(qP)显著下降,而非光化学猝灭系数(NPQ)则显著增加。(2)在菜豆黄化幼苗转绿过程中,Pb或PEG胁迫导致其交替呼吸途径容量较对照均显著上升。(3)Pb或PEG胁迫下,交替呼吸途径抑制剂[水杨基氧肟酸(SHAM,1 mmol/L)]使菜豆黄化幼苗转绿过程中叶绿素含量、Fv/FmFv′/Fm′、Y(Ⅱ)和qP进一步下降, NPQ却进一步增加,说明抑制交替呼吸途径会加剧Pb或PEG胁迫对PSⅡ反应中心活性的进一步抑制,使还原力积累加剧,造成热耗散进一步增加。研究表明,Pb或PEG胁迫均显著降低了菜豆黄化幼苗PSⅡ对光能的利用率,进而阻碍了菜豆黄化幼苗转绿进程;交替呼吸途径有助于在胁迫条件下缓解PSⅡ的过度还原,可能在一定程度上缓解了Pb或PEG胁迫对其转绿进程的阻碍作用。  相似文献   

13.
Photoinduction of NADP-linked glyceraldehyde-3-phosphate dehydrogenase activity in etiolated pea seedlings was investigated in the presence of various concentrations of four inhibitors of protein synthesis (cycloheximide, actinomycin D, chloramphenicol and puromycin) and one photosynthesis inhibitor (DCMU), and compared with increase in chlorophyll and total protein contents. The enzymatic activity and chlorophyll showed similar responses to the action of the antibiotics, whereas they were not significantly affected by the presence of DCMU.  相似文献   

14.
Protochlorophyll Formation and Greening in Etiolated Barley Leaves   总被引:2,自引:0,他引:2  
  相似文献   

15.
油菜甾醇内酯类化合物对叶片展开(leaf-unrolling)的生物活性,以表油菜素内酯效应为最强。epiBR的作用与其浓度及苗龄有关,0.0001ppm时已表现促进作用,至1ppm达最高;epi-BR对4d龄叶片促进最明显,随苗龄增加逐渐下降,表明幼嫩叶片比老叶片对epiBR更为敏感。epiBR能克服环己酰亚胺和放线菌素D对叶片展开的抑制;epiBR与脱落酸之间亦存在拮抗,而与6BA则表现加成作用。  相似文献   

16.
玉米黄化幼苗生理生化特性的研究   总被引:1,自引:0,他引:1  
以玉米品种'户单26'为材料,研究了黑暗条件下生长的玉米黄化幼苗内光合色素、可溶性蛋白含量和抗氧化酶活性的动态变化.结果表明,与正常条件下生长的对照组相比,黄化幼苗的叶绿素a、叶绿素b和类胡萝卜素含量均明显降低,特别是叶绿素a含量大幅度降低;黄化幼苗的抗氧化酶SOD、POD和CAT活性显著提高,可溶性蛋白含量也显著增加.研究发现,黑暗条件下的玉米幼苗叶绿素a的合成受到了显著影响而表现出黄化现象,黄化幼苗能主动提高其自身抗氧化酶活性和可溶性蛋白含量,减轻黑暗逆境对植物细胞的伤害.  相似文献   

17.
Etiolated mung bean seedlings have been shown to contain thefollowing carotenoids: phytofluene, ß-carotene, ß-zeacarotene,5,6-monoepoxy-ß-carotene, 5,6:5', 6'-diepoxy-ß-carotene,violaxanthin, lutein, 5,6-monoepoxylutein, flavoxanthin, andauroxanthin whereas in the light -carotene and neoxanthin werealso identified. In the dark, total carotenoids after 8 dayswere 71.4 µg/g compared to 926.5 µg/g dry weightin light. In the dark, whereas most of the other individualcarotenoids were decreasing between 6 and 8 days, auroxanthinwas increasing. Further, flavoxanthin (5,8-monoepoxylutein)and auroxanthin (5,8:5', 8'-diepoxyzeaxanthin) were decreasingand disappeared in the light. Total xanthophylls increased much more than total caroteneson illuminating etiolated seedlings; lutein increased much morethan ß-carotene. This is in agreement with Goodwinand Phagpolngarm's (1960) results and in contrast to those ofother workers who suggested that ß-carotene was rapidlysynthesized whereas xanthophyll levels altered only slightlyunder these conditions. However, a critical look at these resultsshowed that a considerable increase in carotenes was more thanmatched by the increase in xanthophylls.  相似文献   

18.
The following sterols were identified in barley shoots: stigmasterol, β-sitosterol, campesterol, and cholesterol. The total sterol content of green and etiolated tissue was 2.84 and 3.20 milligrams per gram dry weight, respectively. The free sterols accounted for most of the difference in total sterol content. The sterol ester, sterol glycoside, and acylated sterol glycoside contents of green and etiolated barley shoots were essentially the same. Etiolated tissue had twice as much total β-sitosterol as stigmasterol, while green tissue had equal amounts of these two sterols. The campesterol and cholesterol content was the same in green and etiolated tissue. This same sterol composition pattern held true for the free, glycosidic, and acylated glycosidic sterols; however, the sterol ester fraction had a completely different composition pattern. The esterified stigmasterol content was quite low in green and etiolated tissue, and campesterol was the second largest esterfied sterol component in etiolated tissue. Etiolated barley seedlings exposed to light had a shift in the ratio of free stigmasterol to β-sitosterol in favor of stigmasterol; however, no correlation was observed between chlorophyll synthesis and shift in sterol composition.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号