首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Previous studies have demonstrated that Zymomonas mobilis is a very promising organism for ethanol production. In the present study comparative kinetic data from batch and continuous cultures on glucose media are presented which show that a new strain of Z. mobilis has higher specific rates of growth and ethanol production as well as a higher tolerance to ethanol.  相似文献   

2.
Summary Hexose and pentose sugars, produced by hydrogen-fluoride solvolysis of aspen wood chips, were totally consumed in a coculture fermentation by Zymomonas mobilis and a mutant of Clostridium saccharolyticum. Z. mobilis converted the glucose to ethanol, while the mutant, which was improved in both ethanol production and tolerance, converted the xylose component to ethanol. A high conversion efficiency of wood sugars to ethanol was obtained, and the cells after the fermentation were successfully used for cell recycle.NRCC no. 23211  相似文献   

3.
Summary A chemically defined minimal medium which fulfils the growth requirements of differentZymomonas mobilis strains has been established. The kinetics of ethanol production of the strains ATCC 10988, CU1, CP4 and 11163 grown on the minimal medium at different glucose concentrations were measured. All strains produced ethanol at rates similar to those on complete medium. The minimal medium described is suitable to study spontaneous metabolic deficiciencies and regulation of enzyme activities inZ.mobilis.  相似文献   

4.
Summary The fermentation of large sugar cane chips (1.0–1.5 in) to ethanol by Zymomonas mobilis CP4 (Z. mobilis) was studied in two glass fermentors operating with culture circulation for agitation (the EX-FERM type): a. A laboratory scale(2.5 liter) cylindrical vessel; b. A bench scale (8 liter) wide vessel. Z. mobilis cultures consumed 89–96% of the cane sucrose, converting it to ethanol by 90–97% of the theoretical yield in the laboratory scale fermentor and by 83–90% in the bench scale fermentor culture. Comparative Saccharomyces spp. cultures in laboratory fermentor consumed 96–98% of the cane sucrose, with ethanol conversion of only 75–79% of the theoretical yield.These preliminary results indicated that sucrose in agricultural size sugar cane chips was ethanol fermentable as compared to small size sugar cane chips or to sugar cane juice. Z. mobilis CP4 cultures converted sucrose more efficiently to ethanol than Saccharomyces spp. as shown in the laboratory scale fermentor studies.The ethanol yields in a wide bench scale fermentor cultures were slightly lower than in a laboratory fermentor.  相似文献   

5.
Summary Ethanol production byZ.mobilis has been studied in continuous culture with 10, 15 and 20% glucose media. At 10% glucose, steady state conditions were achieved under glucose-limited conditions. At 15 and 20% glucose, the glucose was not fully metabolized even at low dilution rates and oscillatory behavior was evident. It is proposed that ethanol inhibition of growth is responsible for these phenomena. Comparison of kinetic parameters with those from previously published batch data revealed similar values. The maintenance energy coefficient (m) forZ.mobilis was relatively high and was calculated as 1.6 g/g/h for 10% glucose and 3.1 g/g/h for 15% glucose.  相似文献   

6.
Summary Batch and continuous culture studies have been carried out on a strain ofZ.mobilis (ZM6306) which can convert lactose directly to ethanol. Previous strain development has established that thelac operon encoded on the transposon Tn951 can be expressed inZ.mobilis. Using a medium containing 80 g/l glucose and 40 g/l lactose, it was found that strain ZM6306 could convert about 13 g/l lactose to 4 g/l ethanol and 6 g/l galactose in continuous culture. Further lactose conversion is likely with increased cell concentration using a cell recycle system.  相似文献   

7.
Summary The reducing sugars, glucose, and ethanol produced during growth of the anaerobes Clostridium thermocellum and Acetivibrio cellulolyticus on cellulose were assayed. Zymomonas mobilis was grown under similar conditions and could ferment glucose to ethanol. The ethanol production by the cellulolytic bacteria alone and in co-culture with Zymomonas is described. Approximately 27% of a 1% cellulose substrate could be converted to ethanol by this co-culture.  相似文献   

8.
Summary Among various antimicrobial plant extracts, chemicals and antibiotics used for simultaneous saccharification and fermentation, penicillin G prevented contamination and did not inhibit amylase activity and growth of the synergistic co-cultures Saccharomyces cerevisiae PH03 and Zymomonas mobilis ZM4 during a 7-day fermentation of paddy malt (25.0%) mash (18.0% dextrose equivalent) to ethanol at 30°C and pH 5.5. The treatment yielded 10.1% (v/v) ethanol from the mash which was significantly more than that of the boiled and fermented mash (9.3% v/v) and equal to that of the mash boiled and fermented (10 2% v/v) after added amylases treatment. Most of the other compounds (kanamycin, streptomycin, polymyxin, tetracycline) had growth inhibitory effect especially on Z.mobilis.  相似文献   

9.
Whereas Saccharomyces cerevisiae uses the Embden‐Meyerhof‐Parnas pathway to metabolize glucose, Zymomonas mobilis uses the Entner‐Doudoroff (ED) pathway. Employing the ED pathway, 50% less ATP is produced, which could lead to less biomass being accumulated during fermentation and an improved yield of ethanol. Moreover, Z. mobilis cells, which have a high specific surface area, consume glucose faster than S. cerevisiae, which could improve ethanol productivity. We performed ethanol fermentations using these two species under comparable conditions to validate these speculations. Increases of 3.5 and 3.3% in ethanol yield, and 58.1 and 77.8% in ethanol productivity, were observed in ethanol fermentations using Z. mobilis ZM4 in media containing ~100 and 200 g/L glucose, respectively. Furthermore, ethanol fermentation bythe flocculating Z. mobilis ZM401 was explored. Although no significant difference was observed in ethanol yield and productivity, the flocculation of the bacterial species enabled biomass recovery by cost‐effective sedimentation, instead of centrifugation with intensive capital investment and energy consumption. In addition, tolerance to inhibitory byproducts released during biomass pretreatment, particularly acetic acid and vanillin, was improved. These experimental results indicate that Z. mobilis, particularly its flocculating strain, is superior to S. cerevisiae as a host to be engineered for fuel ethanol production from lignocellulosic biomass.  相似文献   

10.
Summary Vertical Rotating Immobilized Cell Reactor was designed and built for glucose conversion into ethanol. Immobilized biomass units withZ. mobilis cells attached into polyurethane foam discs were fixed along a rotating shaft inside the bioreactor. The effect of rotation speed on the concentration of immobilized biomass was studied. Stability of the bioreactor over long-term operation was dependent on the concentration of the immobilized biomass. With fermentation carried out at 6 rpm a constant active immobilized cell concentration of only 34.5 g/l was maintained and used to convert up to 140 g glucose/l into more than 70 g ethanol/l with a volumetric ethanol productivity of 63 g/l/h.  相似文献   

11.
Summary Zymomonas mobilis strain ZM4 was used for ethanol production from fructose (100 g/l) in continuous culture with a mineral (containing Ca pantothenate) or a rich (containing yeast extract) mediium. With both media high conversion yields were observed but the ethanol productivity was limited by the low biomass content of the fermentor. A new flocculent strain of Z.mobilis (ZM4F) was cultivated in a CSTR with an internal settler and showed a maximal productivity of 93 g/l.h (fructose conversion of 80%). When the fructose conversion was 96% an ethanol productivity of 85.6 g/l.h with an ethanol yield of 0.49 g/g (96% of theoretical) was observed.  相似文献   

12.
Summary Z.mobilis is strain ZM4 was grown on 250 g/l fructose and sucrose media in batch culture and on 100 and 150 g/l sucrose media in continuous culture. With fructose, a significant reduction in the growth rate and the cell yield was apparent although the other kinetic parameters were similar to those previously reported for fermentation of glucose. With sucrose the major differences were a reduction in ethanol yield, (due to levan formation) and a lower final ethanol concentration. Ethanol inhibition of sucrose metabolism occurred at relatively low ethanol concentrations compared to those inhibiting glucose metabolism.  相似文献   

13.
Summary In an effort to establish the reasons for the limitations in the final ethanol concentration of Zymomonas mobilis fermentation, the effects of CO2 and ethanol on the fermentation were investigated using continuous and fed-batch cultivation systems. The nucleation and stripping out of CO2 from the fermenter using diatomaceous earth or nitrogen gas or both exhibited a profound effect on the glucose uptake rate during the early stages of fed-batch fermentation, but did not improve final ethanol yields. The addition of ethanol together with above mentioned experiments confirmed conclusively that ethanol inhibition is responsible for the final ethanol concentration obtainable during Zymomonas mobilis fermentation. The final concentration lies between 90 and 110 gl−1 or approximately 12–15% (v/v) ethanol.  相似文献   

14.
Summary From continuous culture studies it has been shown that the protein concentrations of strains of Z. mobilis (62–68%) were appreciably higher than for the yeast S.uvarum (45–50%). The DNA and RNA contents were similar for the two species. Comparison of the essential amino acids indicated that Z.mobilis did not exhibit the deficiency in methionine which was apparent in the yeast. Such a study of the macromolecular composition of cells of Z.mobilis is important in assessing its by-product nutritional value for animal feed supplementation.  相似文献   

15.
Summary A flocculent mutant of Zymomonas mobilis has been isolated and kinetic studies carried out in batch and continuous culture. By comparison with the parent strain the specific rates of glucose uptake and ethanol production were decreased by 20%. Cell recycle and semibatch cultures with the flocculent strain resulted in relatively high productivities (viz. 50 g/l/h). However semibatch culture had the additional advantages of an increased ethanol concentration (viz. 82 g/l) and a more stable and controlled environment for cell separation.  相似文献   

16.
Summary Cell-free extracts ofZymomonas mobilis were capable of fermenting glucose to ethanol and CO2 when stimulated by arsenate to act as an ATP uncoupler. 2M glucose was completely converted resulting in a final concentration of 16.5 % w/v ethanol. 1 M glucose was completely converted at temperatures up to 50°C. The results demonstrate that the glycolytic enzymes are more resistant to temperature and ethanol than are the living cells.  相似文献   

17.
A model of ethanol fermentation by Zymomonas mobilis ATCC 10988 on the medium containing glucose and fructose is proposed. This model was developed on the basis of metabolic analysis and many experimental findings. When glucose was used as the substrate, the dependence of the carbon fraction (α) assimilating to biomass on the specific growth rate (μ) could be well correlated to α = 0.25μ + 0.012. This correlation resulted in a novel equation for specific glucose uptake rate, which could describe the Z. mobilis fermentation in both batch and continuous modes. When fructose and glucose were both presented in the liquid medium, the model could predict the uptake of glucose and fructose as well as the formation of biomass, ethanol and sorbitol by Z. mobilis. All parameters used in the model were independently evaluated on the basis of various experimental findings. Good agreement was found between the model predictions and data of Z. mobilis fermentation on media containing both glucose and fructose. The proposed model could also describe the behavior of ethanol fermentation on sucrose medium supplemented with immobilized invertase.  相似文献   

18.
Summary Plasmids fromZ. mobilis could be stably maintained inE. coli HB101 in which the expression of various drug resistance markers could be monitored. A large molecular weight plasmid (5.2 kbp) ofZ. mobilis was found to harbour the genes for mercuric chloride degradation and to confer uponE. coli, resistance to a higher mercuric chloride concentration as compared toZ. mobilis. The introduction of this plamsid madeE. coli sensitive to concentrations of cadmium acetate which were originally non-inhibitory to it.  相似文献   

19.
Summary Studies have been carried out with a highly productive strain of Zymomonas mobilis in an immobilized cell reactor using both Ca alginate and -carrageenan as supporting matrices. Productivities above 50 g/l/h have been found at ethanol concentrations in excess of 60 g/l. With immobilized cells of Z. mobilis, there was a decline of approximately 30s% in activity after 800 h operation.  相似文献   

20.
Simultaneous saccharification and co‐fermentation (SSCF) of waste paper sludge to ethanol was investigated using two recombinant xylose‐fermenting microbes: Zymomonas mobilis 8b and Saccharomyces cerevisiae RWB222. S. cerevisiae RWB222 produced over 40 g/L ethanol with a yield of 0.39 g ethanol/g carbohydrate on paper sludge at 37°C, while similar titers and yields were achieved by Z. mobilis 8b at 30°C. Both S. cerevisiae RWB222 and Z. mobilis 8b exhibited decreasing cell viability at 37°C when producing over 40 g/L ethanol. A high ethanol concentration can account for S. cerevisiae RWB222 viability loss, but ethanol concentration was not the only factor influencing Z. mobilis 8b viability loss at 37°C. Over 3 g/L residual glucose was observed at the end of paper sludge SSCF by Z. mobilis 8b, and a statistical analysis revealed that a high calcium concentration originating from paper sludge, a high ethanol concentration, and a high temperature were the key interactive factors resulting in glucose accumulation. The highest ethanol yields were achieved by SSCF of paper sludge with S. cerevisiae RWB222 at 37°C and Z. mobilis 8b at 30°C. With good sugar consumption at 37°C, S. cerevisiae RWB222 was able to gain an improvement in the polysaccharide to sugar yield compared to that at 30°C, whereas Z. mobilis 8b at 30°C had a lower polysaccharide to sugar yield, but a higher sugar to ethanol yield than S. cerevisiae. Both organisms under optimal conditions achieved a 19% higher overall conversion of paper sludge to ethanol than the non‐xylose utilizing S. cerevisiae D5A at its optimal process temperature of 37°C. Biotechnol. Bioeng. 2010;107: 235–244. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号