首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Baumann C  Körner R  Hofmann K  Nigg EA 《Cell》2007,128(1):101-114
We identify PICH (Plk1-interacting checkpoint "helicase"), a member of the SNF2 ATPase family, as an interaction partner and substrate of Plk1. Following phosphorylation of PICH on the Cdk1 site T1063, Plk1 is recruited to PICH and controls its localization. Starting in prometaphase, PICH accumulates at kinetochores and inner centromeres. Moreover, it decorates threads that form during metaphase before increasing in length and progressively diminishing during anaphase. PICH-positive threads connect sister kinetochores and are dependent on tension, sensitive to DNase, and exacerbated in response to premature loss of cohesins or inhibition of topoisomerase II, suggesting that they represent stretched centromeric chromatin. Depletion of PICH causes the selective loss of Mad2 from kinetochores and completely abrogates the spindle checkpoint, resulting in massive chromosome missegregation. These data identify PICH as a novel essential component of checkpoint signaling. We propose that PICH binds to catenated centromere-related DNA to monitor tension developing between sister kinetochores.  相似文献   

2.
Ke Y  Huh JW  Warrington R  Li B  Wu N  Leng M  Zhang J  Ball HL  Li B  Yu H 《The EMBO journal》2011,30(16):3309-3321
Centromeres nucleate the formation of kinetochores and are vital for chromosome segregation during mitosis. The SNF2 family helicase PICH (Plk1-interacting checkpoint helicase) and the BLM (the Bloom's syndrome protein) helicase decorate ultrafine histone-negative DNA threads that link the segregating sister centromeres during anaphase. The functions of PICH and BLM at these threads are not understood, however. Here, we show that PICH binds to BLM and enables BLM localization to anaphase centromeric threads. PICH- or BLM-RNAi cells fail to resolve these threads in anaphase. The fragmented threads form centromeric-chromatin-containing micronuclei in daughter cells. Anaphase threads in PICH- and BLM-RNAi cells contain histones and centromere markers. Recombinant purified PICH has nucleosome remodelling activities in vitro. We propose that PICH and BLM unravel centromeric chromatin and keep anaphase DNA threads mostly free of nucleosomes, thus allowing these threads to span long distances between rapidly segregating centromeres without breakage and providing a spatiotemporal window for their resolution.  相似文献   

3.
Yen TJ 《Cell》2007,128(1):20-21
In this issue, Baumann et al. (2007) identify a helicase PICH that localizes to "threads" that remain connected between sister kinetochores after they have separated in anaphase. These threads are thought to be catenated centromeric DNA. PICH contributes to the mitotic checkpoint by recruiting Mad2 to kinetochores and is proposed to regulate checkpoint signaling by monitoring tension at centromeres.  相似文献   

4.
Centromeres are specialized chromosome domains that control chromosome segregation during mitosis, but little is known about the mechanisms underlying the maintenance of their integrity. Centromeric ultrafine anaphase bridges are physiological DNA structures thought to contain unresolved DNA catenations between the centromeres separating during anaphase. BLM and PICH helicases colocalize at these ultrafine anaphase bridges and promote their resolution. As PICH is detectable at centromeres from prometaphase onwards, we hypothesized that BLM might also be located at centromeres and that the two proteins might cooperate to resolve DNA catenations before the onset of anaphase. Using immunofluorescence analyses, we demonstrated the recruitment of BLM to centromeres from G2 phase to mitosis. With a combination of fluorescence in situ hybridization, electron microscopy, RNA interference, chromosome spreads and chromatin immunoprecipitation, we showed that both BLM-deficient and PICH-deficient prometaphase cells displayed changes in centromere structure. These cells also had a higher frequency of centromeric non disjunction in the absence of cohesin, suggesting the persistence of catenations. Both proteins were required for the correct recruitment to the centromere of active topoisomerase IIα, an enzyme specialized in the catenation/decatenation process. These observations reveal the existence of a functional relationship between BLM, PICH and topoisomerase IIα in the centromere decatenation process. They indicate that the higher frequency of centromeric ultrafine anaphase bridges in BLM-deficient cells and in cells treated with topoisomerase IIα inhibitors is probably due not only to unresolved physiological ultrafine anaphase bridges, but also to newly formed ultrafine anaphase bridges. We suggest that BLM and PICH cooperate in rendering centromeric catenates accessible to topoisomerase IIα, thereby facilitating correct centromere disjunction and preventing the formation of supernumerary centromeric ultrafine anaphase bridges.  相似文献   

5.
Kaulich M  Cubizolles F  Nigg EA 《Chromosoma》2012,121(4):395-408
The putative chromatin remodeling enzyme Plk1-interacting checkpoint helicase (PICH) was discovered as an interaction partner and substrate of the mitotic kinase Plk1. During mitosis PICH associates with centromeres and kinetochores and, most interestingly, constitutes a robust marker for ultrafine DNA bridges (UFBs) that connect separating chromatids in anaphase cells. The precise roles of PICH remain to be clarified. Here, we have used antibody microinjection and siRNA-rescue experiments to study PICH function and localization during M phase progression, with particular emphasis on the role of the predicted ATPase domain and the regulation of PICH localization by Plk1. We show that interference with PICH function results in chromatin bridge formation and micronucleation and that ATPase activity is critical for PICH function. Interestingly, an intact ATPase domain of PICH is required for prevention of chromatin bridge formation but not for UFB resolution, and quantitative analyses of UFB and chromatin bridge frequencies suggest that these structures are of different etiologies. We also show that the ATPase activity of PICH is required for temporal and spatial control of PICH localization to chromatin and that Plk1 likely controls PICH localization through phosphorylation of proteins distinct from PICH itself. This work strengthens the view that PICH is an important, Plk1-regulated enzyme, whose ATPase activity is essential for maintenance of genome integrity. Although not required for the spindle assembly checkpoint, PICH is clearly important for faithful chromosome segregation.  相似文献   

6.
Sister chromatid cohesion is regulated by cohesin complexes and topoisomerase IIα. Although relevant studies have shed some light on the relationship between these two mechanisms of cohesion during mammalian mitosis, their interplay during mammalian meiosis remains unknown. In the present study, we have studied the dynamics of topoisomerase IIα in relation to that of the cohesin subunits RAD21 and REC8, the shugoshin-like 2 (Schizosaccharomyces pombe) (SGOL2) and the polo-like kinase 1-interacting checkpoint helicase (PICH), during both male mouse meiotic divisions. Our results strikingly show that topoisomerase IIα appears at stretched strands connecting the sister kinetochores of segregating early anaphase II chromatids, once the cohesin complexes have been removed from the centromeres. Moreover, the number and length of these topoisomerase IIα-connecting strands increase between lagging chromatids at anaphase II after the chemical inhibition of the enzymatic activity of topoisomerase IIα by etoposide. Our results also show that the etoposide-induced inhibition of topoisomerase IIα is not able to rescue the loss of centromere cohesion promoted by the absence of the shugoshin SGOL2 during anaphase I. Taking into account our results, we propose a two-step model for the sequential release of centromeric cohesion during male mammalian meiosis II. We suggest that the cohesin removal is a prerequisite for the posterior topoisomerase IIα-mediated resolution of persisting catenations between segregating chromatids during anaphase II.  相似文献   

7.
Polo-like kinase 1 (Plk1)-interacting checkpoint helicase (PICH) localizes at the centromere and is critical for proper chromosome segregation during mitosis. However, the precise molecular mechanism of PICH's centromeric localization and function at the centromere is not yet fully understood. Recently, using Xenopus egg extract assays, we showed that PICH is a promiscuous SUMO binding protein. To further determine the molecular consequence of PICH/SUMO interaction on PICH function, we identified 3 SUMO-interacting motifs (SIMs) on PICH and generated a SIM-deficient PICH mutant. Using the conditional expression of PICH in cells, we found distinct roles of PICH SIMs during mitosis. Although all SIMs are dispensable for PICH's localization on ultrafine anaphase DNA bridges, only SIM3 (third SIM, close to the C-terminus end of PICH) is critical for its centromeric localization. Intriguingly, the other 2 SIMs function in chromatin bridge prevention. With these results, we propose a novel SUMO-dependent regulation of PICH's function on mitotic centromeres.  相似文献   

8.
During mitosis, chromosomes undergo dynamic structural changes that include condensation of chromosomes – the formation of individual compact chromosomes necessary for faithful segregation of sister chromatids in anaphase. Polo-like kinase 1 (Plk1) regulates multiple mitotic events by binding to targeting factors at different mitotic structures in a phosphorylation dependent manner. In this study, we report the identification of a putative ATPase that targets Plk1 to chromosome arms during mitosis. PICH (Plk1-interacting checkpoint “helicase”) displays a temporal localization on chromosome arms and kinetochores during early mitosis. Interaction with PICH recruits Plk1 to chromosome arms and disruption of this interaction abolishes Plk1 localization on chromosome arms. Moreover, depletion of PICH or overexpression of PICH mutant that is defective in Plk1 binding or ATP binding causes defects in mitotic chromosome compaction, formation of anaphase bridge and cytokinesis failure. We provide data to show that both PICH phosphorylation and its ATPase activity are required for mitotic chromosome compaction. Our study provides a mechanism for targeting Plk1 to chromosome arms and suggests that the PICH ATPase activity is important for the regulation of mitotic chromosome architecture.  相似文献   

9.
To maintain genomic stability, chromosome architecture needs to be tightly regulated as chromosomes undergo condensation during prophase and separation during anaphase, but the mechanisms remain poorly understood. Here, we show that the Plk1-binding protein PICH and Plk1 kinase coordinately maintain chromosome architecture during prometaphase. PICH knockdown results in a loss of Plk1 from the chromosome arm and an increase in highly disorganized “wavy” chromosomes that exhibit an “open” or “X-shaped” configuration, consistent with a loss of chromosome arm cohesion. Such chromosome disorganization occurs with essentially no change in the localization of condensin or cohesin on chromosomes. Interestingly, the chromosome disorganization could be prevented by treatment with a topoisomerase II inhibitor ICRF-193, suggesting that the PICH–Plk1 complex normally maintains chromosome architecture in a manner that involves topoisomerase II activity. PICH knockdown does not affect initial chromosome compaction at prophase but causes anaphase DNA bridge formation and failed abscission. Our studies suggest that the PICH–Plk1 complex plays a critical role in maintaining prometaphase chromosome architecture.  相似文献   

10.
The Drosophila MEI-S332 protein has been shown to be required for the maintenance of sister-chromatid cohesion in male and female meiosis. The protein localizes to the centromeres during male meiosis when the sister chromatids are attached, and it is no longer detectable after they separate. Drosophila melanogaster male meiosis is atypical in several respects, making it important to define MEI-S332 behavior during female meiosis, which better typifies meiosis in eukaryotes. We find that MEI-S332 localizes to the centromeres of prometaphase I chromosomes in oocytes, remaining there until it is delocalized at anaphase II. By using oocytes we were able to obtain sufficient material to investigate the fate of MEI-S332 after the metaphase II–anaphase II transition. The levels of MEI-S332 protein are unchanged after the completion of meiosis, even when translation is blocked, suggesting that the protein dissociates from the centromeres but is not degraded at the onset of anaphase II. Unexpectedly, MEI-S332 is present during embryogenesis, localizes onto the centromeres of mitotic chromosomes, and is delocalized from anaphase chromosomes. Thus, MEI-S332 associates with the centromeres of both meiotic and mitotic chromosomes and dissociates from them at anaphase.  相似文献   

11.
Two closely connected mechanisms safeguard the fidelity of chromosome segregation in eukaryotic cells. The mitotic checkpoint monitors the attachment of kinetochores to microtubules and delays anaphase onset until all sister kinetochores have become attached to opposite poles. In addition, an error correction mechanism destabilizes erroneous attachments that do not lead to tension at sister kinetochores. Aurora B kinase, the catalytic subunit of the CPC (chromosomal passenger complex), acts as a sensor and effector in both pathways. In this review we focus on a poorly understood but important aspect of mitotic control: what prevents the mitotic checkpoint from springing into action when sister centromeres are split and tension is suddenly lost at anaphase onset? Recent work has shown that disjunction of sister chromatids, in principle, engages the mitotic checkpoint, and probably also the error correction mechanism, with potentially catastrophic consequences for cell division. Eukaryotic cells have solved this 'anaphase problem' by disabling the mitotic checkpoint at the metaphase-to-anaphase transition. Checkpoint inactivation is in part due to the reversal of Cdk1 (cyclin-dependent kinase 1) phosphorylation of the CPC component INCENP (inner centromere protein; Sli15 in budding yeast), which causes the relocation of the CPC from centromeres to the spindle midzone. These findings highlight principles of mitotic checkpoint control: when bipolar chromosome attachment is reached in mitosis, the checkpoint is satisfied, but still active and responsive to loss of tension. Mitotic checkpoint inactivation at anaphase onset is required to prevent checkpoint re-engagement when sister chromatids split.  相似文献   

12.
Incenp is an essential mitotic protein that, together with Aurora B, Survivin, and Borealin, forms the core of the chromosomal passenger protein complex (CPC). The CPC regulates various mitotic processes and functions to maintain genomic stability. The proper subcellular localization of the CPC and its full catalytic activity require the presence of each core subunit in the complex. We have investigated the mitotic tasks of the CPC using a function blocking antibody against Incenp microinjected into cells at different mitotic phases. This method allowed temporal analysis of CPC functions without perturbation of complex assembly or activity prior to injection. We have also studied the dynamic properties of Incenp and Aurora B using fusion protein photobleaching. We found that in early mitotic cells, Incenp and Aurora B exhibit dynamic turnover at centromeres, which is prevented by the anti-Incenp antibody. In these cells, the loss of centromeric CPC turnover is accompanied by forced mitotic exit without the execution of cytokinesis. Introduction of anti-Incenp antibody into early anaphase cells causes abnormalities in sister chromatid separation through defects in anaphase spindle functions. In summary, our data uncovers new mitotic roles for the CPC in anaphase and proposes that CPC turnover at centromeres modulates spindle assembly checkpoint signaling. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The budding yeast S phase checkpoint responds to hydroxyurea-induced nucleotide depletion by preventing replication fork collapse and the segregation of unreplicated chromosomes. Although the block to chromosome segregation has been thought to occur by inhibiting anaphase, we show checkpoint-defective rad53 mutants undergo cycles of spindle extension and collapse after hydroxyurea treatment that are distinct from anaphase cells. Furthermore, chromatid cohesion, whose dissolution triggers anaphase, is dispensable for S phase checkpoint arrest. Kinetochore-spindle attachments are required to prevent spindle extension during replication blocks, and chromosomes with two centromeres or an origin of replication juxtaposed to a centromere rescue the rad53 checkpoint defect. These observations suggest that checkpoint signaling is required to generate an inward force involved in maintaining preanaphase spindle integrity during DNA replication distress. We propose that by promoting replication fork integrity under these conditions Rad53 ensures centromere duplication. Replicating chromosomes can then bi-orient in a cohesin-independent manner to restrain untimely spindle extension.  相似文献   

14.
Activation of the anaphase-promoting complex/cyclosome (APC/C) by Cdc20 is critical for the metaphase–anaphase transition. APC/C-Cdc20 is required for polyubiquitination and degradation of securin and cyclin B at anaphase onset. The spindle assembly checkpoint delays APC/C-Cdc20 activation until all kinetochores attach to mitotic spindles. In this study, we demonstrate that a HECT (homologous to the E6-AP carboxyl terminus) ubiquitin ligase, Smurf2, is required for the spindle checkpoint. Smurf2 localizes to the centrosome, mitotic midbody, and centromeres. Smurf2 depletion or the expression of a catalytically inactive Smurf2 results in misaligned and lagging chromosomes, premature anaphase onset, and defective cytokinesis. Smurf2 inactivation prevents nocodazole-treated cells from accumulating cyclin B and securin and prometaphase arrest. The silencing of Cdc20 in Smurf2-depleted cells restores mitotic accumulation of cyclin B and securin. Smurf2 depletion results in enhanced polyubiquitination and degradation of Mad2, a critical checkpoint effector. Mad2 is mislocalized in Smurf2-depleted cells, suggesting that Smurf2 regulates the localization and stability of Mad2. These data indicate that Smurf2 is a novel mitotic regulator.  相似文献   

15.
The evolutionarily conserved spindle checkpoint is a key mechanism ensuring high-fidelity chromosome transmission. The checkpoint monitors attachment between kinetochores and mitotic spindles and the tension between sister kinetochores. In the absence of proper attachment or tension, the spindle checkpoint mediates cell cycle arrest prior to anaphase. Saccharomyces cerevisiae Mad1p is required for the spindle checkpoint and for chromosome transmission fidelity. Moreover, Mad1p associates with the nuclear pore complex (NPC) and is enriched at kinetochores upon checkpoint activation. Using partial mad1 deletion alleles we determined that the C-terminal half of Mad1p is necessary and sufficient for checkpoint activation in response to microtubule depolymerizing agents, high-fidelity transmission of a reporter chromosome fragment, and in vivo association with centromeres, but not for robust NPC association. Thus, spindle checkpoint activation and chromosome transmission fidelity correlate and these Mad1p functions likely involve kinetochore association but not robust NPC association. These studies are the basis for elucidating the role of protein complexes containing Mad1p in the spindle checkpoint pathway and in maintaining genome stability in S. cerevisiae and other systems.  相似文献   

16.
Loss of centromere cohesion during anaphase in human cells is regulated by the spindle assembly checkpoint and is thought to depend on a ubiquitin ligase, the Anaphase Promoting Complex/Cyclosome (APC). APC-Cdc20 adds ubiquitin chains to securin inducing its destruction by the proteasome and these events correlate with the loss of sister chromatid cohesion and the onset of anaphase. But whether securin destruction is necessary and sufficient for anaphase initiation is not clear. Therefore, we asked if proteasome activity is needed for anaphase onset in human cells that lack securin. We find that even in the absence of securin, a metaphase block with cohered sister centromeres can be enforced in the absence of proteasome activity. Therefore, other targets of the proteasome must be degraded to allow anaphase onset.  相似文献   

17.
Aurora B is a protein kinase and a chromosomal passenger protein that undergoes dynamic redistribution during mitosis. We have probed the mechanism that regulates its localization with cells expressing green fluorescent protein (GFP)-tagged wild-type or mutant aurora B. Aurora B was found at centromeres at prophase and persisted until approximately 0.5 min after anaphase onset, when it redistributed to the spindle midzone and became concentrated at the equator along midzone microtubules. Depolymerization of microtubules inhibited the dissociation of aurora B from centromeres at early anaphase and caused the dispersion of aurora B from the spindle midzone at late anaphase; however, centromeric association during prometaphase was unaffected. Inhibition of CDK1 deactivation similarly caused aurora B to remain associated with centromeres during anaphase. In contrast, inhibition of the kinase activity of aurora B appeared to have no effect on its interactions with centromeres or initial relocation onto midzone microtubules. Instead, kinase-inactive aurora B caused abnormal mitosis and deactivation of the spindle checkpoint. In addition, midzone microtubule bundles became destabilized and aurora B dispersed from the equator. Our results suggest that microtubules, CDK1, and the kinase activity each play a distinct role in the dynamics and functions of aurora B in dividing cells.  相似文献   

18.
Proper chromosome segregation is essential for faithful cell division and if not maintained results in defective cell function caused by the abnormal distribution of genetic information. Polo-like kinase 1–interacting checkpoint helicase (PICH) is a DNA translocase essential for chromosome bridge resolution during mitosis. Its function in resolving chromosome bridges requires both DNA translocase activity and ability to bind chromosomal proteins modified by the small ubiquitin-like modifier (SUMO). However, it is unclear how these activities cooperate to resolve chromosome bridges. Here, we show that PICH specifically disperses SUMO2/3 foci on mitotic chromosomes. This PICH function is apparent toward SUMOylated topoisomerase IIα (TopoIIα) after inhibition of TopoIIα by ICRF-193. Conditional depletion of PICH using the auxin-inducible degron (AID) system resulted in the retention of SUMO2/3-modified chromosomal proteins, including TopoIIα, indicating that PICH functions to reduce the association of these proteins with chromosomes. Replacement of PICH with its translocase-deficient mutants led to increased SUMO2/3 foci on chromosomes, suggesting that the reduction of SUMO2/3 foci requires the remodeling activity of PICH. In vitro assays showed that PICH specifically attenuates SUMOylated TopoIIα activity using its SUMO-binding ability. Taking the results together, we propose a novel function of PICH in remodeling SUMOylated proteins to ensure faithful chromosome segregation.  相似文献   

19.
Several lines of evidence suggest that kinetochores are organizing centers for the spindle checkpoint response and the synthesis of a "wait anaphase" signal in cases of incomplete or improper kinetochore-microtubule attachment. Here we characterize Schizosaccharomyces pombe Bub3p and study the recruitment of spindle checkpoint components to kinetochores. We demonstrate by chromatin immunoprecipitation that they all interact with the central domain of centromeres, consistent with their role in monitoring kinetochore-microtubule interactions. Bub1p and Bub3p are dependent upon one another, but independent of the Mad proteins, for their kinetochore localization. We demonstrate a clear role for the highly conserved N-terminal domain of Bub1p in the robust targeting of Bub1p, Bub3p, and Mad3p to kinetochores and show that this is crucial for an efficient checkpoint response. Surprisingly, neither this domain nor kinetochore localization is required for other functions of Bub1p in chromosome segregation.  相似文献   

20.
One limitation for the study of chromosomal fragile sites is that they must be studied on metaphase spreads, after the breakage. We show here that bacterial lac operator (lacO) repeats are prone to spontaneous breakage, which when combined with a fluorescent lac repressor (lacR) has allowed us to track a fragile site through the cell cycle. By using this system, we show that Plk1-interacting checkpoint helicase (PICH) is already present at fragile sites during interphase, suggesting roles for this helicase beyond mitosis. In addition, we report that the oncogene Myc promotes the formation of anaphase bridges and micronuclei containing fragile-site sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号