首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Defective tumoricidal capacity of macrophages from C3H/HeJ mice   总被引:19,自引:0,他引:19  
Peritoneal macrophages from C3H/HeN mice treated i.p. with T cell mitogens or viable BCG organisms were cytotoxic to syngeneic tumor cells in vitro. Macrophages from endotoxin-unresponsive C3H/HeJ mice treated with BCG or T cell mitogens, however, were not tumoricidal. Furthermore, unlike cells from C3H/HeN mice, macrophages from C3H/HeJ mice could not be activated for tumor cytotoxicity after in vitro treatment with bacterial endotoxins or with lymphokine-rich supernatants. The subnormal induction of cytotoxic macrophages after in vitro or in vivo treatments in C3H/HeJ mice appears to be a highly selective defect. Macrophage responses (yield, phagocytosis, or peroxidase staining) in inflammatory exudates induced by BCG, T cell mitogens, or heterologous serum in C3H/HeJ or C3H/HeN mice were identical. C3H/HeJ macrophages also responded normally in vitor to chemotactic lymphokines. Thus, C3H/HeJ macrophages possess a profound and selective defect in tumoricidal capacity. This defect was not dependent upon exogenous endotoxins. Defective macrophage cytotoxic responses may reflect non-LPS related functions regulated by the LPS gene.  相似文献   

2.
C57BL/10ScN (nu/nu) mice have B cells and macrophages unresponsive to a phenol-water extracted preparation of Escherichia coli K 235 LPS. This unresponsiveness was demonstrated in vitro by the inability of spleen cells to incorporate 3H-thymidine after a 48 hr incubation with LPS (Ph) and by the inability of LPS (Ph) to inhibit macrophage phagocytosis of 51 Cr-labeled, opsonized sheep erythrocytes. Furthermore, macrophage cultures stimulated with LPS (Ph) produced low levels of LAF and PGE2 when compared with macrophages from the LPS-sensitive C3H/HeN and C3H/HeN (nu/nu) strains. Therefore, the C57BL/10ScN (nu/nu) strain is similar in its LPS unresponsiveness to the well-characterized C3H/HeJ and C57BL/10ScCR strains. The combination of endotoxin unresponsiveness and the athymic nature of this mouse strain may provide a powerful new tool for studying the cellular events mediating endotoxicity.  相似文献   

3.
Macrophage synthesis of nitrite and nitrate after activation by BCG infection or by treatment in vitro with both T cell-derived (lymphokines (LK) or recombinant murine interferon-gamma (IFN-gamma] and bacterial (lipopolysaccharide (LPS) and heat-killed bacillus Calmette-Guerin (hk BCG] agents was studied by using macrophages from C3H/He and C3H/HeJ mice. Spleen and peritoneal macrophages isolated from BCG-infected donors that were producing nitrate continued to synthesize nitrite and nitrate in culture. LPS treatment in vitro (25 or 50 micrograms/ml) additionally increased this nitrite/nitrate synthesis. Thioglycolate-elicited macrophages from non-infected C3H/HeJ mice treated with LK also produced nitrite/nitrate, and concurrent LPS (0.1 to 50 micrograms/ml) treatment resulted in enhanced synthesis. Recombinant IFN-gamma also stimulated nitrite/nitrate synthesis by C3H/He and CeH/HeJ macrophages as did LPS (C3H/He only) and hk BCG. When given concurrently with either LPS or hk BCG, IFN-gamma enhanced C3H/He and C3H/HeJ macrophage nitrite/nitrate synthesis over that produced by macrophages treated with either LPS or hk BCG alone. Macrophages activated in vitro exhibited a 4 to 12 hr lag time before engaging in nitrite/nitrate synthesis, which then proceeded for 36 to 42 hr at linear rates. Daily medium renewal did not alter the synthesis kinetics but increased the total amount of nitrite/nitrate produced. Nitrate and nitrite were stable under the conditions of culture and when added did not influence additional macrophage synthesis. Taken together, these results indicate that T cell lymphokines and IFN-gamma are powerful modulators of macrophage nitrite/nitrate synthesis during BCG infection and in vitro, and nitrite/nitrate synthesis appears to be common property of both primed and fully activated macrophage populations.  相似文献   

4.
C3H/HeJ mice possess a genetic lesion that renders them significantly less responsive to the biologic effects of protein-free lipopolysaccharide (LPS) preparations, and more specifically, to the lipid A region of the LPS molecule. The in vivo manifestations of this mutation are also reflected in vitro in that cells derived from this mouse strain fail to respond to LPS when compared with cells derived from fully endotoxin-responsive mouse strains. The precise nature of this gene defect has not yet been established. In this study, we have examined in vitro the biologic activities of a structurally less complex "lipid A precursor" molecule, produced by a conditionally lethal, temperature-sensitive mutant of Salmonella typhimurium. In contrast to the intact LPS or wild-type lipid A extracted from the parental strain of Salmonella typhimurium, the lipid A precursor induced a highly significant, polymyxin B-inhibitable mitogenic response in splenic cultures derived from LPS-hyporesponsive C3H/HeJ and C57BL/10ScN (nu/nu) mice. In addition, the lipid A precursor was found to stimulate cultures of C3H/HeJ macrophages to produce significant levels of both interleukin 1 (IL 1, previously referred to as "lymphocyte activating factor" or "LAF") and prostaglandins of the E series (PGE). These findings suggest the possibility that the defect in endotoxin responsiveness exhibited by C3H/HeJ mice may be related to a defect in the processing of wild-type lipid A or LPS to a suitably stimulatory form that is structurally related to the lipid A precursor molecule.  相似文献   

5.
An avirulent strain of Salmonella, SL3235, has been shown to confer high levels of immunity on lipopolysaccharide (LPS)-hyporesponsive C3H/HeJ mice. Immunized mice were also protected against challenge with Listeria monocytogenes, indicating that the Salmonella vaccine activates macrophages. It was shown that protection and macrophage activation occurred without correction of the LPS defect, as assessed by in vivo endotoxin toxicity, in vitro spleen cell mitogenicity, and the ability of in vivo treatment with LPS to enhance in vitro macrophage ingestion of C3b-coated erythrocytes. It is concluded that LPS responsiveness is neither a necessary nor a sufficient condition for Salmonella immunity, and that macrophage activation can apparently occur in C3H/HeJ mice in the face of a sustained LPS defect.  相似文献   

6.
Macrophages from the lipopolysaccharide (LPS)-responsive C3H/HeN mouse strain and the closely related LPS-nonresponsive C3H/HeJ strain were compared for tumoricidal activation and protein synthetic changes following in vivo and in vitro stimulation, utilizing two-dimensional polyacrylamide gel electrophoresis of [35S]methionine-labeled proteins. Peritoneal macrophages elicited from C3H/HeN mice with heat-killed Propionibacterium acnes exhibited tumoricidal activity in a 16-hr cytolytic assay and expressed cytoplasmic levels of a 23.5-kDa protein during 48 hr of culture. The inability to detect persistent expression of p23.5 in P. acnes-stimulated C3H/HeJ macrophages correlated with the cytolytic impotence of those cells in the 16-hr chromium release assay. C3H/HeN macrophage populations lacking tumoricidal capacity could be rendered lytic, as could P. acnes-elicited C3H/HeJ macrophages, following in vitro stimulation with bacterial lipopolysaccharide. Concomitant with the LPS-induced expression of new functional activity was the appearance of augmented levels of several macrophage-specific proteins, including p23.5. This effect was dependent upon the lipid A moiety of LPS as the effects of LPS could be blocked by inclusion of polymyxin B sulfate in the culture medium. However, neither tumoricidal function nor protein modulation could be readily induced in C3H/HeJ proteose peptone-elicited or resident macrophages. These results identify biochemical responses to stimuli which may be requisite to acquisition or execution of cytolytic activity.  相似文献   

7.
Peritoneal macrophages from LPS hyporesponsive C3H/HeJ mice lose the capacity to bind and phagocytose opsonized sheep erythrocytes (EA) over a 48-hr culture period. This loss in Fc receptor capacity is markedly different from the progressive increase in phagocytic ability exhibited by cultured macrophages derived from LPS-responsive C3H/HeN mice. Since dibutyryl-cyclic adenosine monophosphate (DBcAMP) has previously been reported to modulate membrane receptor expression in lymphocytes and certain macrophage-like cell lines, we examined its effects on EA binding and phagocytosis by C3H/HeJ macrophages. DBcAMP not only reverses the binding defect in C3H/HeJ macrophages but also restores EA phagocytosis to the level of control C3H/HeN cultures. 8-Bromo-cAMP, as well as other agents known to elevate intracellular cAMP (i.e., isoproterenol plus isobutylmethylxanthine or prostaglandin E2) also corrected the phagocytic defect. Since the C3H/HeJ macrophage phagocytic defect can also be reversed by in vitro stimulation with a lymphokine-rich culture supernatant, we examined the effect of this treatment on intracellular cAMP levels. Lymphokine treatment produced a 60% increase in the levels of macrophage intracellular cAMP. These findings suggest that the C3H/HeJ differentiation defect may be secondary to some abnormality in a cAMP dependent pathway.  相似文献   

8.
Previous studies have shown that the activation of murine macrophages to a fully tumoricidal state requires that specific environmental signals be delivered to the macrophage in a step-wise manner: a "priming" signal first renders the macrophage stimulated, but not cytolytic. The addition of a second or "trigger" signal to the primed macrophage results in tumoricidal activity. One potent priming signal has been identified as IFN-gamma and one often used trigger signal for endotoxin-responsive (Lpsn) macrophages is LPS. In contrast to LPS-responsive macrophage, rIFN-gamma-primed C3H/HeJ (Lpsd) macrophages fail to become cytolytic in response to protein-free, phenol-water-extracted LPS preparations, but become tumoricidal when exposed in vitro to protein-rich butanol-extracted LPS or purified lipid A-associated proteins. Further characterization of the activation requirements of the C3H/HeJ macrophages revealed that for optimal elaboration of TNF in vitro, two signals were also required: rIFN-gamma and a second signal that contained LAP. C3H/HeJ macrophages macrophages primed with rIFN-gamma failed to produce TNF in response to any concentration of protein-free phenol-water extracted LPS, even when supernatants were concentrated before assaying for functional activity in a standard TNF L929 fibroblast assay. Although exposure of rIFN-gamma-primed C3H/HeJ macrophages to LAP resulted in a fully tumoricidal state equivalent to that exhibited by C3H/OuJ macrophages, the levels of TNF produced remained discrepant. Under identical conditions, C3H/OuJ macrophages produced approximately fivefold more TNF (11,776 U/ml) than C3H/HeJ macrophages (2,399 U/ml). This suggests that although C3H/HeJ macrophages can respond functionally in a "normal" manner given the correct signals, they remain quantitatively deficient in the production of certain proteins. In this system, the elaboration of TNF and macrophage-mediated tumor cell lysis were shown to be dissociable events. The tumor target used in these studies (P815) was shown to be resistant to as much as 40,000 U/ml of purified rTNF. In addition, C3H/OuJ macrophage cultures exposed to LPS only (which resulted in the production of high levels of TNF), failed to lyse these targets. Lastly, anti-mouse TNF antibody added to macrophage cultures had no effect on the induction of tumor cell lysis.  相似文献   

9.
Peritoneal macrophages from the endotoxin-unresponsive C3H/HeJ substrain of mice were entirely refractory to activation in vitro by protein-free LPS, a defect that was not overcome by co-culture of spleen cells from the responder C3H/St substrain with LPS resistant C3H/HeJ macrophages. The defect in responsiveness appears confined to the lipid A activation signal since C3H/HeJ macrophages were fully activated after in vitro treatment by lipid A protein (LAP)--LPS complex, isolated LAP, and BCG. Moreover, after exposure to allogeneic tumor cells in vivo, C3H/HeJ macrophages were cytotoxic for tumor target cells in vitro. By contrast, macrophages from the responder C3H/St strain were fully activated by protein-free LPS to become cytolytic for tumor cells in vitro. C3H/HeJ macrophages, therefore, exhibit a highly selective defect characterized by unresponsiveness to the lipid A activation signal of protein-free LPS and resistance to the toxic effects of high concentrations of LPS that were lethal to the responder C3H/St strain.  相似文献   

10.
Induction of activated macrophages in C3H/HeJ mice by avirulent Salmonella   总被引:3,自引:0,他引:3  
A single injection of viable Salmonella typhimurium SL3235, an avirulent organism blocked in the aromatic pathway, induced the generation of activated peritoneal macrophages in three different C3H mouse strains, including macrophage-defective C3H/HeJ mice. Macrophages obtained from immunized mice were cytotoxic for B16 melanoma cells, P815 mastocytoma cells, and TU-5 fibrosarcoma cells and microbicidal in vitro for the obligate, intracellular, protozoan parasite Leishmania major. The capacity of live SL3235 to activate C3H/HeJ macrophages contrasts with the failure of live Bacillus Calmette-Guérin to induce activated macrophages in this mouse strain. Although viable SL3235 were capable of fully activating cells of both normal and defective mice, a dose-dependent difference was observed in the number of organisms necessary for induction of tumoricidal macrophages in C3HeB/FeJ (normal) and C3H/HeJ (defective) animals. As few as 80 viable SL3235 were capable of activating C3HeB/FeJ macrophages whereas 5 X 10(4) organisms were required to activate C3H/HeJ macrophages. Maximal macrophage activation occurred 7 to 10 days after SL3235 inoculation in C3H/HeJ and C3HeB/FeJ mice. Acetone-killed cells of SL3235 had some but not all of the activity of the living Salmonella. A single in vivo injection of the nonviable preparation resulted in the induction of tumoricidal macrophages in C3HeB/FeJ but not in C3H/HeJ mice, even when tested over a wide dosage range. Injection of acetone-killed cells of SL3235 did, however, result in a population of primed macrophages in C3H/HeJ mice, as explanted cells could be induced to express activated macrophage effector activities after additional treatment in vitro with either LPS or IFN-gamma. Thus, in vivo administration of viable SL3235 is, by itself, capable of eliciting the full series of steps required for activation of C3H/HeJ macrophages, whereas killed SL3235 only provides signals sufficient to prime these defective macrophages for further activation in vitro. AI 15613  相似文献   

11.
The responsiveness to macrophage migration inhibitory factor (MIF) of peritoneal exudate cells (PEC) from the LPS unresponsive C3H/HeJ and C57BL/10ScCR mice was assessed by the indirect agarose microdroplet macrophage migration inhibition assay. No migration inhibition with PEC from C3H/HeJ nor C57BL/10ScCR mice was detected, whereas PEC from both C3H/HeN and C57BL/10Sn mice were significantly inhibited by even a 1/32 dilution of MIF-containing supernatants. Responsiveness to MIF of C3H/HeJ PEC could, however, be induced. In vivo inoculations of Mycobacterium bovis, strain BCG, 7 days before in vitro assay rendered C3H/HeJ PEC responsive to MIF. The lack of responsiveness to MIF by C3H/HeJ PEC appeared related to some form of suppression, since a mixture of PEC from C3H/HeN mice with 10 to 15% PEC from C3H/HeJ mice resulted in undetectable migration inhibition at any MIF dilution. In contrast to the usual lack of responsiveness of their macrophage to MIF, C3H/HeJ mice were able to produce MIK in response to PPD as well as their counterpart C3H/HeN mice after BCG sensitization. These results demonstrate that macrophages from C3H/HeJ and C57BL/10ScCR mice are unable to be inhibited in their in vitro migration of MIF (possibly being directly or indirectly influenced by a suppressor cell), whereas lymphoid cells from at least one of these strains, the C3H/HeJ mice, can produce MIF in response to antigenic stimulation.  相似文献   

12.
A point mutation in Toll-like receptor 4 (Tlr4) gene in C3H/HeJ mice underlies a defect in LPS-induced cytokine production by peritoneal macrophages (PMphi;). Whether the C-C and the C-X-C chemokines are induced differently by LPS between alveolar macrophages (AMphi;) and PMphi; in this mice remains unclear. Thus, we examined the expression and regulation of macrophage inflammatory protein-1alpha (MIP-1alpha) and macrophage inflammatory protein-2 (MIP-2) in C3H/HeJ macrophages. These results showed that the accumulation of MIP-1alpha and MIP-2 mRNA increased dose dependently in response to LPS. PMphi; responded to LPS to produce significantly higher levels of both chemokine mRNA and protein than AMphi;. In addition, both macrophages produced much more MIP-2 than MIP-1alpha by the same doses of LPS stimulation. Moreover, the chemokine production by C3H/HeN macrophages was significantly higher than that of the C3H/HeJ macrophages. IFN-gamma suppressed the LPS-induced MIP-1alpha release but enhanced the LPS-induced MIP-2 secretion in both macrophages. These results show that the chemokine production was induced and regulated differentially in AMphi; and PMphi;.  相似文献   

13.
C3H/HeJ mice, unresponsive to LPS, exhibit a defective ability to mount antibody responses to T-dependent immunogens. The anti-TNP antibody response to TNP-HRBC, a T-dependent immunogen, was found to be lower in these mice as compared to LPS-responsive C3H/HeN mice, whereas the anti-TNP antibody response to TNP-Ficoll, a T-independent immunogen, was of the same magnitude in C3H/HeJ and C3H/HeN mice. An impaired helper activity of C3H/HeJ HRBC-primed spleen cells was demonstrated in a titration assay in which graded numbers of C3H/HeJ or C3H/HeN HRBC-primed spleen cells were added to cultures containing a constant number of unprimed spleen cells from either C3H/HeJ or C3H/HeN mice and the immunogen TNP-HRBC. The reduced helper T-cell activity of C3H/HeJ HRBC-primed spleen cells appears to be independent of macrophage defects, since C3H/HeJ and C3H/HeN macrophages were found equally effective in antigen presentation as evaluated by an in vitro antigen-specific T-cell proliferation assay. The difference in helper T-cell activity between these two substrains probably reflects a lower number and/or proliferation rate of antigen-responsive T cells in C3H/HeJ mice.  相似文献   

14.
We have investigated the relative immunostimulatory activities of S-chemotype LPS and R-chemotype LPS preparations on C3H/HeJ peritoneal macrophages in vitro. As assessed by either secretion of TNF-alpha or IL-1, some of the R-chemotype LPS manifest significant activity on these normally LPS-unresponsive cells. The expression of IL-1 activity by R-LPS-stimulated C3H/HeJ macrophages was unaffected by IFN-gamma; however, this cytokine significantly enhanced TNF-alpha production by the same cells. The R-chemotype LPS preparations alone were not able to activate C3H/HeJ macrophages to become tumoricidal but activity could readily be demonstrated in the presence of IFN-gamma. Of potential importance is the observation that the profile of relative activity of the various R-chemotype LPS preparations for macrophage activation does not parallel that previously obtained by us for the C3H/HeJ B-lymphocyte activation.  相似文献   

15.
Taxol, a microtubule stabilizing agent, exhibits promise in the treatment of breast and ovarian tumors. Recently, this novel drug has been shown to activate murine macrophages to express TNF-alpha and to down-regulate TNF-alpha receptors, activities shared by bacterial LPS. Our study sought to determine if taxol could regulate gene expression in murine macrophages and to examine further the ability of taxol to generate an LPS-like signal. Toward this end, the ability of taxol to induce TNF-alpha mRNA and five other genes (IL-1 beta, IP-10, D3, D7, and D8) associated with LPS-activation of macrophages was examined by Northern blot analysis. Taxol alone (1-30 microM) induced murine C3H/OuJ macrophages to secrete bioactive TNF-alpha and express increased levels of each of the six genes under investigation. The magnitude and the kinetics of induction of each gene closely resembled that seen with Escherichia coli K235 LPS. Macrophages from LPS-hyporesponsive C3H/HeJ mice, however, failed to induce detectably any of the genes in response to taxol, despite being sensitive to the microtubule stabilizing effects of taxol as determined by immunofluorescence microscopy. The gene induction activity of taxol was in marked contrast to an alternative macrophage activator, heat killed Staphylococcus aureus, which induced a distinct gene profile in C3H/OuJ macrophages and which was equally active in C3H/OuJ and C3H/HeJ macrophages. These data are consistent with an ability of taxol to generate an LPS-like signal, possibly through a common signaling intermediate. As a first step toward identifying signal responses shared by taxol and LPS, we have shown that taxol, as shown previously for LPS, rapidly induces the tyrosine phosphorylation of a 41- and 42-kDa protein.  相似文献   

16.
17.
The rate of glucose utilization has been used as a measure of LPS-induced activation of cultures of C3H/HeN and C3H/HeJ spleen cells, peritoneal cells, and purified peritoneal adherent cells. Peritoneal cells utilized 40 to 60 times more glucose than did spleen cells and purified adherent monolayers were more active than mixed peritoneal cells, suggesting that only macrophage metabolism was being measured. The cell preparations for C3H/HeJ mice were not activated by Escherichia coli K235 LPS prepared by extensive phenol extraction, whereas C3H/HeN cells were activated by the LPS. Cells from both strains were activated by a commercially obtained E. coli 0111:B4 LPS and butanol-extracted K235 LPS. The addition of 10% C3H/HeN spleen cells to C3H/HeJ peritoneal cells resulted in a marked enhancement of glucose utilization. These findings suggest that LPS-induced enhancement of macrophage metabolism occurs both by direct action of LPS on macrophages as well as indirectly through activated lymphocytes.  相似文献   

18.
C3H/HeJ mice exhibit a marked insensitivity to bacterial lipopolysaccharide (LPS) in vivo. Pretreatment of these mice with viable BCG organisms 11 days before LPS administration renders them sensitive to the lethal effects of a highly purified, phenol-extracted LPS. Other in vivo responses to LPS are increased in BCG-infected C3H/HeJ mice in parallel with enhanced lethality. These include 1) the elevation of serum interferon, 2) the production of the acute phase reactant, serum amyloid A (SAA), and 3) hypoglycemia. However, BCG infection has only a minimal effect on anti-LPS antibody production. BCG-infected C3H/HeJ mice approach the LPS sensitivity of normal C3H/HeN mice, but the enhanced LPS sensitivity is transient and decreases over a 2-month period. The ability of BCG to induce LPS sensitivity in C3H/HeJ mice demonstrates that LPS unresponsiveness is not due to an absolute defect in this strain, but rather, a partially reversible state of hyporesponsiveness. In addition, these findings, in conjunction with other observations, suggest that the enhancement of LPS sensitivity induced by BCG infection is mediated primarily through an effect on T cells and/or macrophages rather than B lymphocytes.  相似文献   

19.
The aim of the present study was to compare the effects of LPS on the cellular composition of the splenic white pulp in responder C3H/He and non-responder C3H/HeJ mice. The present results show that an intravenous injection of LPS in C3H/He mice results in a number of prominent changes in the histology of the spleen, but none of these histological changes could be demonstrated in the unresponsive C3H/HeJ mice. However, the present study shows that LPS administration resulted in the disappearance of previously trapped immune complexes from the follicles in both responder C3H/He and non-responder C3H/HeJ mice. The significance of this phenomenon is discussed. The localization of intravenously injected LPS in both mouse strains was compared using an immunoperoxidase technique. Most of the injected LPS was taken up by marginal zone macrophages at 2 h after administration. No major differences could be detected in the localization pattern of LPS between C3H/He and C3H/HeJ mice. The present results support the suggestion that the genetically based unresponsiveness of C3H/HeJ mice could be due to an intracellular defect in their response to LPS.  相似文献   

20.
The present study deals with whether lipopolysaccharide (LPS)-induced intra-uterine fetal death (IUFD) is related to LPS-susceptibility of either mother or fetus and how LPS or LPS-induced TNF causes IUFD. LPS-susceptible C3H/HeN or -hypo-susceptible C3H/HeJ pregnant mice and the mice mated reciprocally with these mice were used on days 14 to 16 of gestation for experiments. All of fetuses in pregnant C3H/HeN mice mated with either C3H/HeN males [HeN(HeN)] or C3H/HeJ males [HeN(HeJ)] were killed within 24 hr when injected intravenously (i.v.) with 50 or 100 microg of LPS. On the other hand, the majority of fetuses in C3H/HeJ females mated with either C3H/HeJ males [HeJ(HeJ)] or C3H/HeN males [HeJ(HeN)] survived when injected i.v. with even 400 microg of LPS. These findings indicate that LPS-induced IUFD depends on the maternal LPS-responsiveness. LPS injected into mothers could pass through placenta to fetuses, since an injection with 125I-labeled LPS or IgG into pregnant mice resulted in considerable levels of radioactivity in fetuses as well as placenta. Cultured peritoneal macrophages derived from F1 mice of HeJ(HeN) or HeN(HeJ) mice, produced nitric oxide (NO) and tumor necrosis factor (TNF) in response to LPS, although the levels of NO and TNF were lower in comparison with those of C3H/HeN macrophage cultures, suggesting a possibility that the fetus as well as F1 cells might be responsible to LPS. LPS-induced IUFD was not blocked by treatment with anti-TNF antibody which inhibited LPS-induced TNF production in pregnant females, although an injection of recombinant TNFalpha instead of LPS could induce IUFD, suggesting that the cause of IUFD cannot be attributed to mother-derived TNF alone. The roles of LPS passed through placenta and LPS-induced mediators on IUFD were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号